

Motion Capture Data

Similarity | Classification

PETR ELIÁŠ

DISA LABORATORY FACULTY OF INFORMATICS MASARYK UNIVERSITY

Contents – Motion Capture Data

- I. Introduction and Challenges
- I. Classification and Current approaches
- III. Our approach Principles and Challenges
- IV. Our approach Results and Future work

Introduction

Motion Capture (MOCAP) Data

Digital approximation of **motions** carried out by **observed subjects** that are **captured** for further **inspection** and **applications**.

- **Digital approximation** (x, y, z) coordinate for each tracked joint and each frame (<120fps)
- Motions such as gait (walking), facial expression, interactions, whole-body actions
- **Observed subjects** are so far commonly individual humans
- Captured by devices based on various technologies (Kinect, OptiTrack, xSens, ...)
- Inspected for analysis, action detection, action recognition, classification, reconstruction
- Applications in medicine, sports, security, entertainment (movies, games), robotics ...

0.3

1.5 Fin 1.8

General challenges

- Too much information on input (complexity)
- High cost of processing the original data (efficiency)
- Feature extraction and dimension reduction (effectivity)
- Various scenarios, various lengths of motions, various data sets (adaptability)

• Applications are highly scenario-dependant no general definition of MOCAP data similarity no accepted universal solution for action recognition or classification

Motion Data Classification

Identifying a category/categories of observed instance on the basis of observations whose category membership is known.

Challenges

- Different actions are performed differently by different actors
- Scope ranging from microgestures (mimics) to complex exercises (dancing)
- Relative vs absolute moves (jog vs jog on place)
- Rotation of actor (run vs run in circle)
- Various frame rates, body sizes, data quality, number of tracked joints, ...

Classification approaches

Features (generally simple)

relative distances or angles between joints, most informative joints, velocity changes, absolute coordinates, space-time occupancy, skeletal quads, covariance of 3D Joints, flexible dictionary of action primitives, ...

combined with

Classifier (generally complex)

Distance Based: Dynamic Time Warping, k-NN, ... **and Machine learning based:** Support Vector Machines, Neural Networks, Hidden Markov Models, Boltzman machines, ...

2) Classify image based on their visual similarity to others based on known approaches (k-NN classifier on Caffe descriptors)

Our approach - Motivation

- Visualization of motion data provides humans with better understanding compared to set of high-dimensional vectors
- Comparing visual similarity of images is a known concept nowadays it achieves high precision and many techniques might be employed
- Instead of finding complex solution to a problem sometime it is easier to reduce the problem into another problem that already has known solution
- Universality (scenario independance) of this approach by selecting a proper transformation function that visually differentiates target classification categories

Our approach - Process

Our approach – Motions as Images

Every motion is a time series of (x, y, z) coordinates of all tracked joints.

Our approach – Motions as images

2015 | PETR ELIAS | DISA | FI MU

Our approach - Challenges

- Notion of time
 - Various speed of performances
 - Various lengths of actions
- Normalization
 - Initial rotation of subject (rotate by hips, first frame, all frames)
 - Centering in space (put root joint in (0,0,0), first frame, all frames)
 - Human skeleton size (infant vs adult, bones size normalization)
 - Range normalization (into RGB or other target space)
- Segmentation
- Action recognition in longer sequences

Normalization

I. Pose centering Root joint to (0, 0, 0)

II. Pose rotation by angle φ Rotation along y-axis by angle φ is determined as an angle between z-axis and straight line connecting left and right hip in a y-projected 2D space (x,z)

III. Coordinates values normalization Reduction to desired range such as RGB or (0, 1)

Results – confusion matrix

hdm	05 1464 moves 1	L <mark>5</mark> ca	ateg	orie	es	2-NN based classifie					icat	ion	93	93.17% precision			
ID	MOVE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	#Ns
1	cartwheel	100															6
2	grabDepR		96		4												105
3	kick			98	2												49
4	move		0,2		93		2				0,5					4	430
5	punch					100											48
6	rotateArms				11		89										46
7	' sitLieDown		2		2			95									43
8	standUp				2				95							2	43
9	throwR				4					96							23
10	jump				12						84	4					25
11	hopOneLeg				6							94					18
12	neutral												83	1		16	75
13	tpose								1				2	98			198
14	exercise				11						5				84		19
15	turn		0,3		2								7			91	336

Other approaches comparison

Action	N_s	N_f	\mathbf{pos}	pw	cen	key	rotateArmsLBack	16	1725	93.8	93.8	43.8	100
cartwheelLHandS	21	8627	100	100	100	100	rotateArmsRBack	16	1685	100	56.3	43.8	100
clapAboveHead(1)	14	6102	100	100	100	100	sitDownChair (2)	20	6377	90.0	70.0	100	90
depositLowR	28	7767	100	75.0	100	100	sitDownFloor (3)	20	8154	95.0	100	80.0	100
elbowToKnLeS (7)	13	5756	100	100	100	100	sitDownKnTS(10)	17	10978	100	100	100	100
hitRHandHead	13	2943	84.6	92.3	7.69	92.3	sitDownTable	20	5411	85.0	60.0	35.0	85.0
hopBothLegs	36	3462	61.1	91.7	41.7	91.7	skierLstart	30	4240	100	100	90.0	100
hopLLeg	41	3080	100	100	95.1	100	squat (8)	13	7619	100	100	100	100
hopRLeg	42	3107	100	100	100	100	staircaseDownRS	15	3338	100	100	86.7	100
jogLeftCircleRS	17	4142	100	94.1	100	100	standUpKnTS (9)	17	3094	100	100	82.4	100
JumpingDown	14	3952	92.9	7.14	76.5	92.9	standUpSitChair	20	5919	90.0	85.0	100	100
jumpingJack (6)	13	5589	100	100	0	100	$\operatorname{standUpSitFloor}$	20	8060	90.0	100	95.0	95.0
kickLFront (5)	14	6422	78.6	78.6	0	78.6	standUpSitTable	20	5000	85.0	65.0	30.0	70.0
kickLSide	26	6063	76.9	88.5	92.9	88.5	throwBasketball	14	5710	78.6	92.9	0	78.6
kickRFront	15	6728	100	86.7	53.9	86.7	${\rm throwSitHighR}$	14	4192	100	100	78.6	100
kickRSide	15	7020	93.3	100	80.0	66.7	throwStandingLR	14	4957	100	85.7	0	100
punchLFront	15	5924	80.0	73.3	67.7	86.7	turnLeft	30	5882	76.7	43.3	40.0	80.0
punchLSide	15	5324	86.7	66.7	53.3	26.7	turnRight	30	5908	93.3	86.7	70.0	86.7
punchRFront (4)	15	6450	93.3	86.7	60.0	73.3	walkLstart	31	4818	96.8	93.6	83.9	96.8
punchRSide	14	5140	85.7	85.7	28.6	78.6	walkRightCrossF	16	5369	100	100	93.8	100
rotateArmsBBack	16	5111	100	100	100	100	Average			92.7	86.5	66.9	91.1

Luo, J., Wang, W., & Qi, H. (2014). Spatio-Temporal Feature Extraction and Representation for RGB-D Human Action Recognition. *Pattern Recognition Letters*. doi:10.1016/j.patrec.2014.03. 024

Summary

Advantages

- Difference between motions can be observed directly by visual comparison
- Interesting approach combining known technologies to solve challenging problem
- Potential for scenario independent solution
- Sub motion and repetitive action recognition using NN
- Quite robust and toletant to various lengths (even 50x resized images still obtain similar precision)

Disadvantages

- No solution for segmentation
- Not suitable for online action recognition
- Computationally and time demanding computing of image descriptors (order of minutes)

Future work

Action recognition based on segmentation

- Motion classification using Convolutional Neural Network trained on subset of motion images or better Convolutional Neural Network trained on MOCAP data
- Comparison with DTW approach (centered, rotated, normalized poses)
- •Optimize the speed of feature extraction Caffe descriptor is a current bottleneck

Sources

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., & Bajcsy, R. (2014). Sequence of the most informative joints (SMIJ): A new representation for human skeletal action recognition. *Journal of Visual Communication and Image Representation*, *25*(1), 24–38. doi:10.1016/j.jvcir.2013.04.007

Poppe, R., Van Der Zee, S., Heylen, D. K. J., & Taylor, P. J. (2014). AMAB: Automated measurement and analysis of body motion. *Behavior Research Methods*, *46*, 625–33. doi:10.3758/s13428-013-0398-y

Chen, X., & Koskela, M. (2013). Classification of RGB-D and Motion Capture Sequences Using Extreme Learning Machine. *Image Analysis*, 640–651. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-38886-6_60

Luo, J., Wang, W., & Qi, H. (2014). Spatio-Temporal Feature Extraction and Representation for RGB-D Human Action Recognition. *Pattern Recognition Letters*. doi:10.1016/j.patrec.2014.03.024

Vieira, A. W., Nascimento, E. R., Oliveira, G. L., Liu, Z., & Campos, M. F. M. (2012). STOP: Space-Time Occupancy Patterns for 3D action recognition from depth map sequences. In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* (Vol. 7441 LNCS, pp. 252–259). doi:10.1007/978-3-642-33275-3_31

Evangelidis, G., Singh, G., & Horaud, R. (2014). Skeletal Quads : Human Action Recognition Using Joint Quadruples. doi:10.1109/ICPR.2014.772

Hussein, M. E., Torki, M., Gowayyed, M. a., & El-Saban, M. (2013). Human action recognition using a temporal hierarchy of covariance descriptors on 3D joint locations. *IJCAI International Joint Conference on Artificial Intelligence*, 2466–2472.