PV26o0 COURSE INTRODUCTION

ROADMAP TO SOFTWARE QUALITY

Barbora BUhnova
buhnova®@fi.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

ally
lasaris

Outline of the lecture

* Course introduction
 Course motivation and goals
» Course organization
* Ourteam

« Roadmap to quality assurance methods
* Prevent quality issues
 Detect quality issues
* Repair quality issues
 Keep track of quality issues

* Quality attributes
 External vs. Internal quality attributes

ally
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

* Course introduction
 Course motivation and goals
» Course organization
* Ourteam

« Roadmap to quality assurance methods
* Prevent quality issues
 Detect quality issues
* Repair quality issues
 Keep track of quality issues

* Quality attributes
 External vs. Internal quality attributes

ally
lasaris

© B. BUhnova, PV260 Software Quality

Course motivation and goals

“People forget how fast you did a job — but they remember how well
you did it” — some guy named Howard Newton

* Students graduate as junior developers, with much learning ahead
to reach senior developer expertise.

» We can speed up this process if the knowledge in between is
condensed into practical training guided by industrial experts

* The aim of the course is to help the students to
» understand activities contributing to building high-quality software;

» develop critical thinking and be able to identify code flaws related to
reliability, performance, scalability, maintainability and testability;

* be able to refactor existing code to improve different quality attributes;
* have practical experience with software testing and related tooh...

lasaris

© B. BUhnova, PV260 Software Quality

Outline of lectures

Lect 1. Course organization. Roadmap to software quality engineering methods.
Lect 2. Software measurement and metrics, and their role in quality improvement.
Lect 3. Quality in software development, Clean Code & SOLID principles.

Lect 4. Bad code smells and code refactoring.

Lect 5. Focus on quality attributes and conflicts between them.

Lect 6. Static code analysis and code reviews.

Lect 7. Best practices in software testing and testability. Popular testing strategies.
Lect 8. Requirements and test cases. From unit testing to integration testing.

Lect 9. Continuous integration and issue tracking.

Lect 10. Performance engineering and performance testing.

Lect 11. Challenges of quality management in cloud applications.
Lect 12. Quality and testing in agile.

Lect 13. Software quality management process. Course summary.

ally
lasaris

© B. BUhnova, PV260 Software Quality

Course organization

* Lectures
* Given mostly by experts from companies, not recorded

* Seminars
* Practical assignments on computers
« Teamwork, homework, projects
* 2 Java groups — taught by LaSArIS lab members
* 1 C# group —taught by YSoft experts

* Evaluation
* 5o points for seminar assignments
* 10 seminar bonus points
* 10 lecture bonus points

* Minimum of 40 points for passing the course -..
lasaris

© B. BUhnova, PV260 Software Quality

Our team

iy N~) /Honeywell\

lasaris °
)) SOFET * Jaromir Skrivan
* Barbora BUhnova o - Lukaé PitoRak
* Bruno Rossi * Ondrej Krajlcelf . Jakub Papcun
 David Gesvindr * Martin Osovsky e Jan Svoboda
Stanislav Chren * Petr Neugebauer K /
\\ Vaclav Hala / K. Radim Goth /
4 I
PerFCake
- —
<embed/it> SIEMENS ool Macik
 Michal Godar * JanVerner \. Martin Vecera)
ally
lasaris

© B. BUhnova, PV260 Software Quality

Outline of the lecture

* Course introduction
 Course motivation and goals
» Course organization
* Ourteam

» Roadmap to quality assurance methods
* Prevent quality issues
 Detect quality issues
* Repair quality issues
 Keep track of quality issues

* Quality attributes
 External vs. Internal quality attributes

ally
lasaris

© B. BUhnova, PV260 Software Quality

-
Quality Assurance (QA) methods

ownd
Meas 4 tes ’
“rement gy, Mmety] PN e ces0
odiy, CMmM rtes forvw
~ ?de b Nue P ?CtLCC \IO?V\/\,Q L i
Alr . r oy, o aeve Usability testing
g, e vy e Security testing
0ot esig,, :
A< ®’ S In)
Destgw patter - S Fevie,,
71’((:;«- Statie)
, ’ ode ’
soup> ‘PYLN;:PLCS QZ:L:% ke o amaLa sic
w Coaé 9L 3 X
clea . Y aty, ; o, eeri, g\o‘@"’w(b Cbevwe,\/\'
A '\,SVW tés 9 e’(,‘(O\WO\
W\,eOV\ V~m \99 o)A W
W W ft Y
\Lev® W estin, W
X0 ot g {\,Cb X
\‘“‘”\"C vfo¥ W coW aw gt
v Security tactics oal Aeot W
TeeW”
oy
lasari

© B. BUhnova, PV260 Software Quality

B
Roadmap to QA methods

Prevent Detect
quality issues quality issues

Define
quality issues

Repair Keep track of
quality issues quality issues

ally
lasaris

© B. Buhnova, PV260 Software Quality

Define quality issues

* Software quality is commonly Prevent
defined as the capability of quality issues

a software product to conform
quality issues

to requirements [ISO/IEC goo1].
K_’ Keep track of
customer needs quality issues

* Requirements engineering

* Software metrics
* 'You cannot manage what you cannot measure’

* Quality attributes
« Of a product, process and resources

ally
lasaris

© B. BUhnova, PV260 Software Quality

Prevent quality issues

» Coding best practices Prevent
» Clean code, SOLID principles quality issues
* Design patterns
 Pair programming

Define
quality issues

] Keep track of
e Code conventions quality issues

» Language specif. recommendations

* Quality assurance processes
* V-model of testing

e Standards for development process improvement
« CMMI and ITIL reference models
* |ISO 9000, ISO/IEC 25010

ally
lasaris

© B. BUhnova, PV260 Software Quality

Detect quality issues

» Testing functional requirements Prevent Detect
e Manual or automated quality issues quality issues

Define
quality issues

* Testing non-functional req.

. Perfprmance, usability, security ri—
testing quality issues

* Design inspections
* Manual inspections of design artifacts

» Code reviews
« Manual inspections of code

« Automated static code analysis

ally
lasaris

© B. Buhnova, PV260 Software Quality

Roadmap to software testing

Implementation Cycle

— 1T

Specify Design Prototype Configure Validate Deploy \ENET

Acceptance Functional System and Release Test Acceptance Post-production

Development

o) Criteria Test Integration Test (User) Test Tuning
= Functional
47 Unit Backend Non-functional Usability Application
2 } Component Middleware Regression Learnability Infrastructure
Testing Third party Requirements
Strategy

y

Performance Test Security Test

Response time Penetration
Stress Red team
Test management

Functional testing _
Tuning
Non-functional testing .

Inspired from [1] | | .
lasaris

y

Test cases
Test resources
Test plan

End-to-End View

© B. BUhnova, PV260 Software Quality

Repair quality issues

* Functional issue Prevent
* Code repair quality issues

Define
quality issues

* Reliability issue
e Fault tolerance mechanisms - R

quality issues quality issues

e Performance issue

 Concurrency, effective resource utilization,
identify and remove system bottlenecks

* Security issue
* Identify and remove system vulnerabilities (single points of failure)

* Maintainability issue

* Refactoring to clean code principles, to design patterns -.. .
lasaris

© B. BUhnova, PV260 Software Quality

Keep track of quality issues

* Issue tracking Prevent

* Supports the management of quality issues
issues reported by customers

Define
quality issues

* Technical debt management
_ _ Keep track of
* Level of code quality degradation quality issues

« Work that needs to be done before
a particular job can be considered complete or proper

 Configuration management
* Version management and release management
* System integration

ally
lasaris

© B. BUhnova, PV260 Software Quality

Roadmap to QA methods —the Big Picture

Prevent quality issues Detect quality issues

- Coding best practices (Non)Functional testing -
- Code conventions Design inspections -

- QA processes Code reviews -
- Standards Static code analysis -

Define quality issues

- Requirements engineering
- Quality attributes

Repair quality issues Keep track
- Reliability tactics of quality issues
- Performance tactics Issue tracking -
- Security tactics Technical debt management -
- Maintainability tactics Configuration management -
oy
lasari

© B. Buhnova, PV260 Software Quality

Choose well, plan well

* Think well about your requirements

and the cost of the quality Cost i

7

time to market

Prevention costs -

automated testing —
\l, Quality o/ Functionality

II Appraisal costs

¢ manual testing

Internal failure costs
\L operational downtime

External failure costs
business loss

ally
lasaris

© B. BUhnova, PV260 Software Quality

Combination is the key

c\0°
O ’\Im.well a)(:\’o\,\l, APV
¢ o\(\w owWVY x\0
VAT R oo
_o— ’ @ ’ OO d'
w0 e e W o owd \
—T0 90 OI\N 7@"0{999\\/@(0@6.
" , N—
10 20 30 40 50 60 70 80 90 100

From [2,3], see also RebelLabs reports [4]

Regression test

Informal code reviews

Unit test

New function (component) test

Integration test

Low-volume beta test (< 10 users)
Informal design reviews
Personal desk checking of code

System test
Formal design inspections
Formal code inspections

Modeling or prototyping

High-volume beta test (> 1000
users)

ally
lasari

© B. BUhnova, PV260 Software Quality

Outline of the lecture

* Course introduction
 Course motivation and goals
» Course organization
* Ourteam

« Roadmap to quality assurance methods
* Prevent quality issues
 Detect quality issues
* Repair quality issues
 Keep track of quality issues

* Quality attributes
 External vs. Internal quality attributes

ally
lasaris

© B. BUhnova, PV260 Software Quality

..and your customer?
What "quality" means to you?

...and your manager?

visible {

it works — =

it looks — =

good inside
invisible

it will work

also next
year J

Stakeholders view

User Experience
(customer)

Code Quality
(developer)

Long-term View
(manager)

Quality goals

- Usability

- Accuracy

- Reliability

- Performance
- Security

Feature

- Modularity

- Complexity

- Resilience

- Understandability
- Testability

Engineering

- Adaptability

- Portability

- Reusability

- Maintainability
- Scalability

Adjustability

ally
lasaris

© B. Buhnova, PV260 Software Quality

-
The Software Quality Iceberg

< | Visible/Symptoms GIELIIG e
~ s usability _
R security
S 5 y accuracy s
s N ’*'RNALQ@LITY performance &
§ - ” e - e S— a
g T £
i Invisible / Root coding practices ;:
S INTERNAL QUALITY program structure i\
-—
§ é complexity A
2 B testabilit <

QD Y S
§ 2 flexibility Al

aé) reusability

3 maintainability

understandability
Inspiration from [5]
ally
lasaris

© B. Buhnova, PV260 Software Quality

.
The big five

* Along the course we will focus on:

* Reliability — probability of failure-free operation over a period of time
 Maintainability — ease of change (without increased technical debt)
 Performance - response time and efficiency in resource utilization

* Scalability — system’s ability to handle growing work load

* Testability — degree to which the system facilitates testing

* Quality attributes studied in related courses:

* Security — system’s ability to protect itself from attacks
* Usability — ease of system use and learnability

ally
lasaris

© B. BUhnova, PV260 Software Quality

Takeaways

* Quality assurance (QA) is much more than testing, including
many different methods to
- prevent, detect, repair and keep track of quality issues

« Combination of the methods is the key to successful QA
* But choose well and plan well, not all methods are best for your project!

* Make sure you understand the needs of your customer

* Balance both internal and external quality attributes for both
the present and the future K

thanks for Listening
Barbora Buhnova, FI MU Brno
buhnova@fi.muni.cz contact me
www.fi.muni.cz/~buhnova ™
/ ally
lasaris

© B. BUhnova, PV260 Software Quality

References

[1] Testing You Perform When You Develop a Siebel Application. Available online at
http://docs.oracle.com/cd/E14004_o01/books/DevDep/Overviews.html

[2] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction, Second Edition. Microsoft Press, June 2004.

[3] Kevin Burke. Why code review beats testing: evidence from decades of
programming research. Available online at
https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/

[4] RebelLabs. 2013 Developer Productivity Report. Available online at
http://zeroturnaround.com/rebellabs/developer-productivity-report-2013-how-

engineering-tools-practices-impact-software-quality-delivery/

[5] Jonathan Bloom. Titanic Dilemma: The Seen Versus the Unseen. Available online
at http://blog.castsoftware.com/titanic-dilemma-the-seen-versus-the-unseen/

ally
lasaris

© B. BUhnova, PV260 Software Quality

