

 Static Code Analysis
and

Manual Code Review

Jakub Papcun, Jan Svoboda

About Us

•  part time Java developers 2011 – 2014

•  full time Software Engineers since 2015

•  Experience with full software development cycle, its
practices and use of tools

•  Some experience with best practices development

•  Static Code Analysis and Issue Tracking integration
•  Static Code Analysis and Manual Code Review integration

Lecture Outline

•  Static Code Analysis, Manual Code
Review
–  What it is?

–  Good and Evil sides

–  Why why why

–  Examples

Code Quality

Code Quality

CQ

Readable

Documented

Secure

Bug Free

What is Static Code Analysis?

•  No program execution

•  Performed on Source Code of the
software (ideally compiled)

•  Automated process

SCA in everyday life

SCA in everyday life

Types of SCA
•  Type checking

–  checks for correct assignment of types of objects

•  Style checking

–  checks the style of the code and its formatting

•  Program Understanding

–  helps user make sense of large codebase and may include
refactoring capabilities

•  Program verification and property checking

–  attempts to prove that the code correctly implements the
specification of the program

•  Security review

–  uses dataflow analysis for detection of possible code injection

•  Bug finding

–  looks for places in the code where program may behave in a
different way from the way intended by developer

SCA in development cycle

Software
Dev.

Process

Architecture

Design

Implementation Testing

Deployment

SCA in development cycle

Software
Dev.

Process

Architecture

Design

Implementation Testing

Deployment

Why Use Static Code Analysis

Higher Code Quality

Readibility No Input

Cheaper defect

 fixing

Education
Coding

Guidelines
Compliance

Repeatibility

Possible drawbacks

False
sense of
security

Possible
overhead

Only
STATIC
analysis

Time
consuming if

done manually

Dynamic code analysis

•  Analysis during execution of program

•  DCA process:
–  preparing input data

–  running a test program

–  analyzing the output data

•  Able to find run-time errors

Pitfalls of SCA
Is a Problem Is not a Problem

Was Reported True Positive False Positive

Was not Reported False Negative

Metrics

•  LOC

•  comments quality

•  cyclomatic complexity

•  dependency cycle detection

Checkers

•  Rule defining possible bug/defect

•  Examples
–  Unused local variable

–  Memory leaks

–  SQL injection

–  Call of function on null

Severities – Level 1

•  Very serious problems

•  May crash at runtime

•  Examples
–  Null pointer dereference where null comes

from condition
–  SQL connection/Input stream is not closed

on exit
–  Buffer overflow—array index out of bounds

Severities – Level 1

Severities – Level 2

•  Serious problems, Security issues

•  May crash at runtime

•  Examples
–  Modification of unmodifiable collection
–  Data/SQL injection
–  Memory leak possible

Severities – Level 2

Severities – Level 3

•  May cause moderate problems

•  Usually do not crush running program

•  Examples
–  Unused private method
–  Possible error in bit operations
–  Incorrect allocation size

Severities – Level 3

Severities – Level 4

•  Violation of coding standards, possible
performance issues

•  Very little possibility of program crashing

•  Examples
–  Comparing objects with ==
–  Empty catch clause
–  Statement has no effect

Severities – Level 4

Example 1

Example 1

Can return null

A NullPointerException is thrown in case of an attempt to dereference a null
value.

Example 2

Example 2

Statement always false

1.  Statement is always false and never enters the block

Example 2

Statement always false

1.  Statement is always false and never enters the block
2.  s variable is always null and NullPointerException may be thrown

s is always null

Example 3

Example 3

& or &&

Questionable use of bit operation ‘&’ in expression. Did you mean ‘&&’?

Example 4

Example 4
j is never used

1.  j variable is never used and thus redundant

Example 4
j is never used

1.  j variable is never used and thus redundant
2.  k variable is never initialized and thus unusable

k not initialized

Example 5

Example 5

REST may fail and return null

may return null

Tools

Integration

•  World is getting automatized

•  Time is money

•  Put as much data together as
possible

Integration

•  Issue Tracking

•  Assign Static Code Analysis findings
to Issues in Issue Tracking System

Q&A

Manual Code review

Outline

•  What is MCR

•  Motivation

•  MCR in DEV lifecycle

•  Types of MCR

•  Pitfalls of MCR

•  Relation between MCR and SCA

What is MCR

•  Systematic examination of the source code
•  To be effective

–  The goal of the review needs to be
established

–  Some rules need to be obeyed

•  Goal determines purpose of review

–  Bug finding

–  Security

–  Architecture compliance

Motivation

Motivation

Motivation

•  Improves code quality
–  Reviewer has different point of view

•  Decreases cost of defect fixing

•  Education

MCR in development cycle

Software
Dev.

Process

Architecture

Design

Implementation Testing

Deployment

MCR in development cycle

Software
Dev.

Process

Architecture

Design

Implementation Testing

Deployment

Types of MCR

•  Formal

•  Informal

•  Tool-assisted

Formal Review

•  Typically face-to-face meeting
•  Roles (moderator, observer, reviewer)
•  Participants go through the source code to

fulfill goal of review

• Well documented
• Process oriented Pros

• Time consuming
• Effort required does not correspond to value

gained
• Human Factor

Cons

Informal review

•  Typically two developers (author and
reviewer) conducting ad-hoc review

•  Over-the-shoulder review

•  Extreme programming

• Simple
• Saves time and resources Pros
• Not documented
• Not process oriented
• Higher chance to miss an issue

Cons

Tool-assisted review

•  A tool is used for the review

•  Designed to mitigate drawbacks of
other approaches

Manual Code Review Tool

Automated
File

Gathering

Combined
Display

Automated
Metrics

Collection

Process
Enforcement

Tool-assisted review

•  Documented
•  Enforcing process
•  Time efficient
•  Reviewer has all the time required

Pros

•  Cost of the tool
•  It is easier for reviewer to cheat Cons

Tools for MCR

Atlassian Crucible

Pitfalls of MCR

•  Human factor
–  Communication skill is one of the most

important ones for MCR
–  Honest feedback is foundation stone of each

successful review
–  Reviewer perspective

•  Might leave out/soften some of the findings in order
not to offend author

•  Might use improper language and offend author
–  Author perspective

•  Might feel confrontated in case of many findings
•  Softening/leaving out findings ruins education benefit

Pitfalls of MCR

•  Review of complex code
–  A reviewer needs to study code in more

depth to understand it

–  Often help of the author is needed

–  Time consuming

–  The reviewer might tend to check only
common and obvious mistakes

Relation between SCA and MCR

•  MCR is natural part of SCA

Establish
Goal

Run
SCA

Review
Code

Fix Code

Conclusion

•  MCR are very effective if done
properly
–  Choose proper review method

–  Establish goal of the review

–  Be honest

–  Use proper and polite language

–  Never be personal

Thank You

Q&A

