Static Code Ana’ysis
and
Manual Code Review

Jakub Papcun, Jan Svo@da

part time Java developers 2011 -2014
full time Software Engineers since 2015

Experience with full software development cycle, its
practices and use of tools

Some experience with best practices development

Static Code Analysis and Issue Tracking integration
Static Code Analysis and Manual Code Review integration

Lecture Outline

« Static Code Analysis, Manual Co’
Review

- What it is?

- Good and Evil sides
- Why why why

- Examples

—A—"1J ™\

Code Quality

I ‘qe OM.Y VALic,{ MEAYURE e T
OF Codde Quacity: WTFs/minute

 No program execution

. Performed on Source Code of the
software (ideally compiled)

* Automated process

| ——

iy ‘TR B 72 = 3NN

—— . ey S)
CA in everyday life

C++

\P ‘
p <

/ ™
~_ e \
-
L

NS = J
A\ 'y —-, —— : | g—
\\\ ‘j.;i [/C-J == -j\ -\:;\ = " P

WIS @ ‘ MBI
VY 2 A =/ WG\ S

<

J|

T

(@]
(’;::;]\?
L

Types of SCA

« Type checking
- checks for correct assignment of types of objects
» Style checking
- checks the style of the code and its formatting
« Program Understanding

- helps user make sense of large codebase and may include
refactoring capabilities

« Program verification and property checking

- attempts to prove that the code correctly implements the
specification of the program

« Security review
- uses dataflow analysis for detection of possible code injection
« Bug finding

- looks for places in the code where program may behave in a
different way from the way intended by developer

Deployment Desig n
Software

Dev.
\ Process l
TeStl ng Implementation
| A

X CAin development cycle |

Architecture

y W

Deployment Design
Software
Dev.
\ Process ’
Testing Implementation

am

rd >
Why Use Static Code Analysis

Cheaper defect
Higher Code Quality p .
fixing
Repeatibility =
Coding
Readibility No Input Education Guidelines
Compliance

-

. FE

_ | —
A —l\\ —
Possible drawbacks

False Only
sense of STATIC
security analysis

Possible Time

consuming if

overhead
done manually

'Dynamic code analysis

* Analysis during execution of progr

 DCA process:
- preparing input data
- running a test program
- analyzing the output data

~+ Able to find run-time errors

Pitfalls of SCA

Is a Problem Is not a Problem
Was Reported True Positive False Positive
Was not Reported False Negative

private static final Map<Integer, Integer> PARAM STATUS NAME MAPPING =
ImmutableMap.of (PARAM OPEN ID, OPEN STATUS ID,
PARAM CLOSED ID, CLOSED STATUS_ID):

private Predicate getPredicateForType(int type, Parameters params, RegularTimePeriod cursor){
Predicate result = null;
switch (type){
case (PARAM OPEN ID):
int status = PARAM STATUS NAME MAPPING.get (type):

result = // do something;

break
case (PRREM CLOSED ID):
int status = PARAM STATUS NAME MAPPING.get (type):
result = // do something;
break
}
return result;

trics
. LOC

e comments quality

» cyclomatic complexity

i ~* dependency cycle detection

heckers

* Rule defining possible bug/defec"

 Examples
- Unused local variable
- Memory leaks
- SQL injection

I - Call of function on null

- N *)%
' A =

Severities - Level 1

* Very serious problems
* May crash at runtime

 Examples

- Null pointer dereference where null comes
from condition

- SQL connection/Input stream is not closed
on exit

I | - Buffer overflow—array index out of bounds

A TRl

Severities - Level T

1 static void printPoint (Point p) {

2 if (p == null) {

= System.err.printin("p is null");

4 }

5 if (p.x < 0 |] p.v < 0) {

3 System.out.println("Invalid point"):;
7 return;
8 }
9

System.out.println(p):’
10 }

= | N J% |

everities - Level 2

* Serious problems, Security issues
* May crash at runtime

 Examples
- Modification of unmodifiable collection
- Data/SQL injection

- Memory leak possible

1 public static void main(String[] args) throws Exception {
Properties info = new Properties():
info.setProperty("usexr", "root");
info.setProperty("password", "“6nR$% _");
Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3307", info):;
try {
/e
} finally {
connection.close();

YN JF e

pr—
Severities - Level 3

 May cause moderate problems
» Usually do not crush running progre

 Examples
- Unused private method
- Possible error in bit operations

I . - Incorrect allocation size

rd
Severities - Level 3

1 static void printErrorMessage (String message) {
2 System.out.err (“An error occured”):;
31 }

* Violation of coding standards, possible
performance issues

* Very little possibility of program crashing'

 Examples
- Comparing objects with ==
- Empty catch clause
- Statement has no effect

Severities - Level 4

1 Proffesional john = new Proffesional ("John", 25, "miner");
2 public boolean checkJohn (Person p) {

3 return p == john;

4 }

private Map<String, String> paths = new HashMap<String, String>():;

public void addPath(String name, String path) |
paths.put (name, path):;

}

private String getNormalizedPath(String name) throws IOException { |
return paths.get (name) .toLowerCase () ;

private Map<String, String> paths = new HashMap<String, String>():;

public void addPath(String name, String path) |
paths.put (name, path):;

}

private String getNormalizedPath(String name) throws IOException { |

return|paths.get (name)|. toLowerCase () ;

Can return null

A NullPointerException is thrown in case of an attempt to dereference a null
value.

£
Example 2

private static void foo(){
int 1 = 0;
String 8 = null;

if(i > 0){
8 = "positive™;

if(s.contains ("pos")){
System.out.println(s);

Example 2

private static void foo(){
int 1 = 0;

String 8 = null;

Statement always false

8 = "positive™;

}

if(s.contains ("pos")){

System.out.println(s);

}

1. Statement is always false and never enters the block

private static void foo(){
int i = 0;
String 8 = null;

Statement always false

8 = "positive™;

}

Systenlfut.println(s);

s is always null

—

Statement is always false and never enters the block
2. s variable is always null and NullPointerException may be thrown

rd
Example 3

private static void foo(int arr
if(arr != null & arr.length != 0) {
foo2();

}

return;

rd

Example 3

private static void foo(int arr

if(arr != null & arr.length != 0| {

foo2();
}

return;

Questionable use of bit operation ‘&’ in expression. Did you mean ‘&&’?

private static void foo(int Jj) {
Integer k;

switch (k) {
case 1: System.out.println("k lower than 2."); break;
case 2: System.out.println("k equals 2."); break:;
case 3: System.out.println("k bigger than 2."); break;
default: System.out.println("K = " + k);

}

return;

Example 4

private static void foo(int j
Integer k;
switch (k) {
case 1: System.out.println("k lower than 2."); break;
case 2: System.out.println("k equals 2."); break:;
case 3: System.out.println("k bigger than 2."); break;

default: System.out.println("K = " + k);
}

return;

1. j variable is never used and thus redundant

Example 4

private static void foo(int j j is never used
Integer k;

switch k not initialized
case 1: System.ouT.princln ower than 2."); break;

case 2: System.out.println("k equals 2."); break:;

case 3: System.out.println("k bigger than 2."); break;
default: System.out.println("K = " + k);

}

return;

1. j variable is never used and thus redundant
2. kvariable is never initialized and thus unusable

Example 5

public void foo () {
Item item = new Item():
if(item.getInfo() != null) {
String info = item.getInfo().trim():

}

class Item{
public String getInfo () {
// Making REST Request

}

Example 5

public void foo () {
Item item = new Item():
if(item.getInfo() != null) {
String info = |[item.getInfo ()|.trim()

|

class Item{
public String getInfo () {
// Making REST Request

}

REST may fail and return null

* World is getting automatized
* Time is money

» Put as much data together as
possible

! __

* Issue Tracking

» Assign Static Code Analysis finding
to Issues in Issue Tracking System

! _

utline

« What is MCR

* Motivation

« MCR in DEV lifecycle
* Types of MCR
 Pitfalls of MCR

* Relation between MCR and SCA

S ——

hat is MCR

« Systematic examination of the source ¢
* To be effective

- The goal of the review needs to be
established

- Some rules need to be obeyed
» Goal determines purpose of review
- Bug finding

- Security
- Architecture compliance

Before Code Review

Bugs Remaining
463

§
g
:
%
i

After After
QA/Test Customer
($200/fix) ($1000/fix)

Cost of fixing bugs: $174k
+ Cost of 194 latent bugs: $194k

Total Cost:($368k

Motivation

After Code Review

Bugs Remaining
463

Bugs Remaining in the Application

After
Development

After
Code Review
($25/fix)

DA\

After After
QA/Test Customer
($200/fix) ($1000/fix)

Cost of fixing bugs: $120k
+ Cost of 32 latent bugs: $§ 32k

Total Cost: .@

Motivation

* Improves code quality
- Reviewer has different point of view

* Decreases cost of defect fixing

 Education

Deployment Desig n
Software

Dev.

\ Process l
TeStl ng Implementation
.

oo RS

Architecture

y W

Deployment Design
Software
Dev.
\ Process ’
Testing Implementation

am

* Formal

e |Informal

 Tool-assisted

/‘ ' —l‘ —_— i
Formal Review

Typically face-to-face meeting
* Roles (moderator, observer, reviewer)

« Participants go through the source code to
fulfill goal of review "

(
» Well documented
PI‘OS » Process oriented
.
(
« Time consuming
C « Effort required does not correspond to value
O n S gained
* Human Factor
_

L\

Informal review
|

» Typically two developers (author an
reviewer) conducting ad-hoc review

» Over-the-shoulder review

 Extreme programming

s
» Simple
PrOS » Saves time and resources

* Not documented

CO n S * Not process oriented

l W

\(

rd

Tool-assisted review

* Atool is used for the review
* Designed to mitigate drawbacks of

other approaches

|

Manual Code Review Tool

f

Automated
File
Gathering

\

f

Combined
Display

\

f

Automated
Metrics
Collection

~

f

.

Process
Enforcement

J

/‘ | —l‘ —_— i
Tool-assisted review

s
 Documented
* Enforcing process
PrOS * Time effi%:ilie)nt
* Reviewer has all the time required
&
4

C » Cost of the tool
OnS * |tis easier for reviewer to cheat

L\

Tools for MCR
|

Atlassian

M Crucible

Atlassian

@ Stash

Atlassian Crucible

AH @ ¥ Fiter © 2m Keyboard shortcuts

AllUpperCaseFormatter.java o
AllUpperCaseFormatterTest.java
CSVFieldFormatter java
CSVFormatterConfigParser.java B
CSVFormatterConfigParserTest jave anupamsg I * @param fieldMapping
CSVFormatterFactory.java = the field for which formatters should be created
DoNothingFormatter.java anupamsg I * @param fieldMapping the field for which formatters should be created
FirstWordFormatter.java * @throws net.sf.anupam.csv.exceptions.CSVOException
FirstWordFormatterTest java
FormatterConfiguration.java
LastWordFormatter.java
LastWordFormatterTest.java Reply - Edit - Delete - Add to favourites - 16:55
TrimWordFormatter.java
TrimWordFormatterTest java 4% | dissagree|
v (& mapping
CSVBeanMapping.java
CSVFieldMapping java
CSVMappingParser.java
+ G taglets Quote source @ ©
CSVBeanMappingTaglet.java
CSVFieldMapping Taglet.java m Keep as draft | Discard Autosaved at 4:56 PM
») CSVFormatterMappingTaglet.java
CSVParser.java
CSVParserFactory java (1 = thrown if the specified formatters cannot be created
CSVParserFactory Test.java Y g ° K4
CSVParserTest java anupamsg k private void createFormattersFor(final CSVFieldMapping fieldMapping) {
final CSVFormatterFactory formatterFactory = CSVFormatterFactory
.getSingleton();
anupamsg k private void createFormattersFor(final CSVFieldMapping fieldMapping)
throws CSVOException {

/CSVParser/src/.../csv/CSVParserFactory.java < Changed FishEye File Outdated ~

1213 O Leave Unread

Jan Svoboda
This is wrong

CSVParserTimed Test.java
CSVReader.java
CSVReaderTest.java

v (@ testnet/sf/anupam/csv/beans anupamsa

Designation.java anupamsg K final CSVFieldFormatter formatter = formatterFactory
Employee.java anupamsg k final CSVFieldFormatter formatter = FORMATTER_FACTORY
E] .cvsignore anupamsg I .createFormatterFor(fieldMapping.getReformatterName());
(=) README fieldMapping.setFormatter(formatter);
(2 build.number
[T/ build.properties R

anupamsg L * Resolves bean references for the specified field, and sets the bean

* mapping hierarchy accordingly.

Pitfalls of MCR

e Human factor

Communication skill is one of the most
important ones for MCR

Honest feedback is foundation stone of eac
successful review

Reviewer perspective

« Might leave out/soften some of the findings in order
not to offend author

» Might use improper language and offend author
Author perspective

* Might feel confrontated in case of many findings

» Softening/leaving out findings ruins education benefit

* Review of complex code

- A reviewer needs to study code in mc
depth to understand it

- Often help of the author is needed
- Time consuming

- The reviewer might tend to check only
common and obvious mistakes

« MCR is natural part of SCA

Establish
Goal

)

SCA

| >

Review
Code
. [re—

Fix Code

onclusion

« MCR are very effective if done
properly
- Choose proper review method
- Establish goal of the review
- Be honest
- Use proper and polite language
- Never be personal

—

