
BUY IT, USE IT, BREAK IT, FIX IT

CONTINUOUS INTEGRATION

SAMUEL PETOVSKY



OUTLINE

• Introduction
• Overview
• Motivation
• Best Practices
• Build Servers
• Real Life Example



INTRODUCTION

• Software development practice where members 
of a team integrate their work as often as 
possible, usually several times a day to prevent
„integration hell“

• Build automation

• Often combined with automated testing



INTRODUCTION

• Feature toggle instead of branches

• Continuous delivery

• Build servers



OVERVIEW

• Commit it

• Build it

• Test it

• Fix it (if broken)



MOTIVATION

• Switch to continuous deployment has 
been linked to very concrete and visible 
financial success (Linkedin)

• Facebook releases to production twice a 
day

• Amazon makes changes to production 
every 11.6 seconds

• 8 minutes after you commit code it's live 
in production (Google Consumer Surveys)



BEST PRACTICES

1. Maintain a Single Source Repository

• Use Source code management tools (SVN, Git, 
Mercurial)

• Put all project-related files into repository



2. Automate the Build

• Involve everything in the build (running pre-
installation scripts, loading database schema, 
compiling…)

• Ant, MSBuild, Make
• Build servers

BEST PRACTICES



3. Make the Build Self-Testing

• Produce self-testing code
• xUnit tests, Selenium…

BEST PRACTICES



4. Everyone Commits To the Mainline Every Day

• Break the work into small chunks
• It prevents „Integration Hell“
• Issues and conflicts are detected sooner and 

thus easier to fix

BEST PRACTICES



5. Every Commit Should Build the Mainline on an 
Integration Machine

• No branches
• Commit build

BEST PRACTICES



6. Fix Broken Builds Immediately

• Fixing the broken build has a highest priority
• Revert to latest stable state

BEST PRACTICES



7. Keep the Build Fast

• Do not include everything in the commit builds
• Use parallelization
• Put more time-consuming tasks into nightly 

builds instead (static code analysis…)

BEST PRACTICES



8. Test in a Clone of the Production Environment

• The difference between test and production 
environments can cause troubles.

• Use the same hardware, operating system, 
database, firewall settings, test on the real data.

BEST PRACTICES



9. Make it Easy for Anyone to Get the Latest 
Executable

• To help make this work, anyone involved with a 
software project should be able to get the latest 
executable and be able to run it

BEST PRACTICES



10. Everyone can see what's happening

• Continuous integration is about communication.
• Everyone should know the state of the mainline 

build.

BEST PRACTICES



12. Automate Deployment

• CI makes deployment boring.
• Consider an automated rollback.

BUILD SERVERS



• Tools that help with CI
• Build and deployment automation
• Advanced setting of CI cycle (pre and post-build 

steps, build stages, task parallelization)
• Often offer scalability
• Bamboo, Jenkins, Travis

BEST PRACTICES



REAL LIFE EXAMPLE



Q&A

SAMUEL PETOVSKY


