
PV260 Software Quality

NAME, SURNAME and UČO: __

Q1. How would you refactor the following code fragments? [PLEASE answer in ENGLISH, you
can also answer in natural language and/or with code/pseudocode]

a.

b.

c.

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

if ((platform.toUpperCase().indexOf(“MAC”) > -1) &&
(browser.toUpperCase().indexOf(“IE”) > -1) && wasInitialized() &&
resize > 0){
 //Do something
}

String findPerson(String[] people){
 for (int i = 0; i < people.length; i++){
 if (people[i].equals (“Don”)) {
 return “John”;
 }
 if (people[i].equals (“John”)) {
 return “Jack”;
 }
 }
}

This example derives from Fowler's (et al.) book [1] – the purpose was to show the Replace Temp with Query refactoring.
A revisited solution taking into account some coding standards violations could be the following (the other “magic
numbers” could be replaced as well):

if (basePrice() > MAX_THRESHOLD){
 return basePrice() * 0.95;
} else{
 return basePrice() * 0.98;
}
…
double basePrice(){
 return quantity * itemPrice;
}

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing Code, 1st edition. Reading,
MA: Addison-Wesley Professional, 1999.

This example derives also from Fowler's (et al.) book [1] – the purpose was to show the Introducing Explaining Variable
refactoring. A revisited solution taking into account some coding standards violations could be the following:

final boolean IS_MACOS = platform.toUpperCase(). indexOf(“MAC”) > -1;
final boolean IS_IEBROWSER = browser.toUpperCase(). indexOf(“IE”) > -1;
final boolean WAS_RESIZED = resize > 0;

if (IS_MACOS && IS_IEBROWSER && wasInitialized() && WAS_RESIZED){
 //Do something
}

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing Code, 1st edition. Reading,
MA: Addison-Wesley Professional, 1999.

Q2. Show that the following (Java-based) code breaks the Liskov substitutability principle
[PLEASE answer in ENGLISH]

public class Point {
 private final int x;
 private final int y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 @Override public boolean equals(Object o) {
 if (o == null || o.getClass() != getClass())
 return false;
 Point p = (Point) o;
 return p.x == x && p.y == y;
 }
 ... // Remainder omitted
}

Another example from Fowler's (et al.) book [1] – the purpose was to show introduction of a new algorithm with a clearer
one (there should be also a generic return to make this compile). A revisited solution could be the following:

String findPerson(String [] people){
 final List candidates = Array.asList(new String[] {“Don”, “John”})
 for (int i = 0; i < people.length; i++){
 if (candidates. contains (people[i]))
 return people[i];
 }
 return “”;
}

Other comments are that people could be a collection type not an array. Call to people.length might be a performance
issue, but it really depends on the compiler optimization (that is might be that the same bytecode is generate as if the
assignment of length would happen just once).

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing Code, 1st edition. Reading,
MA: Addison-Wesley Professional, 1999.

This is an example from Joshua Bloch's' book [2] – there is a nice section about equals and hashcode implementations for
classes. One point is that hashcode should be always overridden when equals is, but apart from this, as in [2] if we
subclass from Point to add a global counter functionality we might get the following:
public class CounterPoint extends Point {
 private static final AtomicInteger counter = new AtomicInteger();
 public CounterPoint(int x, int y) {
 super(x, y);
 counter.incrementAndGet();
 }
 public int numberCreated() {
 return counter.get();
 }
}
Then when used we can get the following:
 Point p = new Point(16,32);
 Point p2 = new Point(16,32);
 Point p3 = new CounterPoint(16,32);
 System.out.println (p.equals(p2)); // this returns true
 System.out.println (p2.equals(p3)); // this returns false

Using instance of instead of getclass could avoid to break liskov substitutability principle, but might introduce other
problems (see in [1] the discussion about reflexivity, simmetry and transitivity). In such cases, and if possible, the
suggestion is to avoid inheritance and use composition (in the example, a class Counter will have a private instance of
Point).

[2] J. Bloch, Effective Java, 2 edition. Upper Saddle River, NJ: Addison-Wesley, 2008.

