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Motivation

Checking Quality
Testing is incomplete, gives no guarantees of correctness.
Deductive verification is expensive.

Typical reasons for system failure
Unexpected or boundary input values.
Interaction of system components.
Parallelism (difficult to test).

Model Checking
Automated verification process for ...
... parallel and distributed systems.
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Section

Verification of Parallel and Reactive Programs
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Parallel Programs

Parallel Composition
Components concurrently contribute to the transformation of
a computation state.
The meaning comes from interleaving of actions
(transformation steps) of individual components.

Meaning Functions Do Not Compose
Meaning function of a composition cannot be obtain as
composition of meaning functions of participating
components.
The result depends on particular interleaving.
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Example of Incomposability

Parallel System
System: (y=x; y++; x=y) ‖ (y=x; y++; x=y)
Input-output variable x
Meaning function of both processes is λx->x+1.
The composition is: (λx->x+1)·(λx->x+1).
(λx->x+1)·(λx->x+1) 0 = 2

Two Different System Runs
State = (x , y1, y2)
(0,-,-) y1=x−→ (0,0,-) y2=x−→ (0,0,0) y1++−→ x=y1−→ (1,1,0) y2++−→ x=y2−→ (1,1,1)

(0,-,-) y1=x−→ (0,0,-) y1++−→ x=y1−→ (1,1,-) y2=x−→ (1,1,1) y2++−→ x=y2−→ (2,1,2)
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Properties of Parallel Programs

Observation
Specific timing of events related to interaction of components
is a form of (part of) input.
Asynchronous parallel system can be viewed as reactive as
there are unknown inputs at the time of execution.

Consequence
For parallel and reactive systems it is difficult to specify the
intended behaviour using pre- and post-conditions.
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Properties of Parallel/Reactive Programs

Examples of Specification
Events A and B happens before event C.

User is not allowed to enter a new value until the system
processes the previous one.

Procedure X cannot be executed simultaneously by processes
P and Q (mutual exclusion).

Every action A is immediately followed by a sequence of
actions B,C and D.

Turning into Formal Language
Use of Modal and Temporal Logics.
Amir Pnueli, 1977
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Deductive Verification for Modal and Temporal Logic

Observation
Systems similar to Hoare Logic may be built for modal and
temporal logic.
Even more demanding on personal.
For parallel and reactive systems exhibits similar disadvantages
as techniques built on top of pre- and post-conditions.

Model checking
Alternative way of formal verification of systems.
Specification given with formulae of some temporal logic.
Based on state-space exploration.
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Section

Model Checking
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Model Checking

Model Checking – Overview
Build a formal modelM of the system under verification.
Express specification as a formula ϕ of selected temporal logic.
Decide, ifM |= ϕ. That is, ifM is a model of formula ϕ.
(Hence the name.)

Optionally
As a side effect of the decision a counterexample may be
produced.
The counterexample is a sequence of states witnessing
violation (in the case the system is erroneous) of the formula.
Model checking (the decision process) can be fully
automated for all finite (and some infinite) models of
systems.
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Model Checking – Schema

Requirements

Specification

Property

Formalization

System

System Model

Model Checking

Simulation

Counterexample
Invalid

Valid

ErrorModelling
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Automated Tools for Model Checking

Model Checkers
Software tools that can decide validity of a formula over a
model of system under verification.
SPIN, UppAal, SMV, Prism, DIVINE . . .

Modelling Languages
Processes described as extended finite state machines.
Extension allows to use shared or local variables and guard
execution of a transition with a Boolean expression.
Optionally, some transitions may be synchronised with
transitions of other finite state machines/processes.
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Section

Modelling and Formalisation of Verified Systems
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Atomic Proposition

Reminder
System can be viewed as a set of states that are walked along
by executing instructions of the program.
State = valuation of modelled variables.

Atomic Propositions
Basic statements describing qualities of individual states, for
example: max(x , y) ≥ 3.
Validity of atomic proposition for a given state must be
decidable with information merely encoded by the state.
Amount of observable events and facts depends on amount of
abstraction used during the system modelling.
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Kripke Structure

Kripke Structure
Let AP be a set of atomic propositions.
Kripke structure is a quadruple (S,T , I, s0), where

S is a (finite) set of states,
T ⊆ S × S is a transition relation,
I : S → 2AP is an interpretation of AP.
s0 ∈ S is an initial state.

Kripke Transition System
Let Act be a set of instructions executable by the program.
Kripke structure can be extended with transition labelling to
form a Kripke Transitions System.
Kripke Transition System is a five-tuple (S,T , I, s0,L), where

(S,T , I, s0) is Kripke Structure,
L : T → Act is labelling function.
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Kripke Structure – Example

Kripke Structure

P

P,S,B

P,S,C

Beer

Coke

Payment Choice

AP={P – Paid, S – Served, C – Coke, B – Beer}
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Kripke Structure – Example

Kripke Transition System

P

P,S,B

P,S,C

Takes Beer

Takes Coke

Chooses Coke

Chooses BeerGives Coin

Beer

Coke

Payment Choice

AP={P – Paid, S – Served, C – Coke, B – Beer}
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System Run

Run
Maximal path (such that it cannot be extended) in the graph
induced by Kripke Structure starting at the initial state.
Let M = (S,T , I, s0) be a Kripke structure. Run is a sequence
of states π = s0, s1, s2, . . . such that ∀i ∈ N0.(si , si+1) ∈ T .

Finite Paths and Runs
Some finite path π = s0, s1, s2, . . . , sk cannot be extended if
@sk+1 ∈ S.(sk , sk+1) ∈ T .
Technically, we will turn maximal finite path into infinite by
repeating the very last state.
Maximal path s0, . . . , sk will be understood as infinite run
s0, . . . , sk , sk , sk , . . ..
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Implicit and Explicit System Description

Observation
Usually, Kripke structure that captures system behaviour is not
given by full enumeration of states and transitions (explicitly),
but it is given by the program source code (implicitly).
Implicit description tends to be exponentially more succinct.

State-Space Generation
Computation of explicit representation from the implicit one.
Interpretation of implicit representation must be formally
precise.

Practise
Programming languages do not have precise formal semantics.
Model checkers often build on top of modelling languages.
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En Example of Modelling Language – DVE

Finite Automaton
States (Locations)
Initial state
Transitions
(Accepting states)

Transitions Extended with
Guards
Synchronisation and
Value Passing
Effect (Assignment)

Local Variables
integer, byte
channel

p1

p4

p2

p3
x=

=
b

b=
0,

 x
=

0

sync c?x

b=b+1

b=
b+

1
Process B 

byte b,x;
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Example of System Described in DVE Language
channel {byte} c[0];

process A {
byte a;
state q1,q2,q3;
init q1;
trans
q1→q2 { effect a=a+1; },
q2→q3 { effect a=a+1; },
q3→q1 { sync c!a; effect a=0; };
}

process B {
byte b,x;
state p1,p2,p3,p4;
init p1;
trans
p1→p2 { effect b=b+1; },
p2→p3 { effect b=b+1; },
p3→p4 { sync c?x; },
p4→p1 { guard x==b; effect b=0, x=0; };
}

system async;

IA169 System Verification and Assurance – 05 str. 20/45



Semantics Shown By Interpretation

State: []; A:[q1, a:0]; B:[p1, b:0, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
1 〈1.0〉: p1 → p2 { effect b = b+1; }
Command:1
—————————————————————
State: []; A:[q1, a:0]; B:[p2, b:1, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
1 〈1.1〉: p2 → p3 { effect b = b+1; }
Command:1
—————————————————————
State: []; A:[q1, a:0]; B:[p3, b:2, x:0]
0 〈0.0〉: q1 → q2 { effect a = a+1; }
Command:0
—————————————————————
State: []; A:[q2, a:1]; B:[p3, b:2, x:0]
0 〈0.1〉: q2 → q3 { effect a = a+1; }
Command:0
—————————————————————
State: []; A:[q3, a:2]; B:[p3, b:2, x:0]
0 〈0.2&1.2〉: q3 → q1 { sync c!a; effect a = 0; }

p3 → p4 { sync c?x; }
Command:0
—————————————————————
State: []; A:[q1, a:0]; B:[p4, b:2, x:2]

IA169 System Verification and Assurance – 05 str. 21/45



Section

Formalising System Properties
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Specification as Languages of Infinite Words

Problem
How to formally describe properties of a single run?
How to mechanically check for their satisfaction?

Solution
Employ finite automaton as a mechanical observer of run.
Runs are infinite.
Finite automata for infinite words (ω-regular languages).
Büchi acceptance condition – automaton accepts a word if it
passes through an accepting state infinitely many often.
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Automata over infinite words

Büchi automata
Büchi automaton is a tuple A = (Σ,S, s, δ,F ), where

Σ is a finite set of symbols,
S is a finite set f states,
s ∈ S is an initial state,
δ : S × Σ→ 2S is transition relation, and
F ⊆ S is a set of accepting states.

Language accepted by a Büchi automaton
Run ρ of automaton A over infinite word w = a1a2 . . . is a
sequence of states ρ = s0, s1, . . . such that s0 ≡ s and
∀i : si ∈ δ(si−1, ai ).
inf (ρ) – Set of states that appear infinitely many time in ρ.
Run ρ is accepting if and only if inf (ρ) ∩ F 6= ∅.
Language accepted with an automaton A is a set of all words
for which an accepting run exists. Denoted as L(A).
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Shortcuts in Transition Guards
Observation

Let AP={X,Y,Z}.
Transition labelled with {X} denotes that X must hold true
upon execution of the transition, while Y and Z are false.
If we want to express that X is true, Z is false, and for Y we
do not care, we have to create two transitions labelled with
{X} and {X ,Y }.

APs as Boolean Formulae
Transitions between the two same states may be combined
and labelled with a Boolean formula over atomic propositions.

Example
Transitions {X}, {Y}, {X,Y}, {X,Z}, {Y,Z} a {X,Y,Z} can be
combined into a single one labelled with X ∨ Y .
If there are no restrictions upon execution of the transition, it
may be labelled with true ≡ X ∨ ¬X .
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Task: Express with a Büchi automaton

System
Vending machine as seen before.
Σ = 2{P,S,C ,B},
Paid = {A ∈ Σ | P ∈ A}, Served = {A ∈ Σ | S ∈ A}, . . .

Express the following properties
Vending machine serves at least one drink.
Vending machine serves at least one coke.

Vending machine serves infinitely many drinks.
Vending machine serves infinitely many beers.

Vending machine does not serve a drink without being paid.
After being paid, vending machine always serve a drink.
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Section

Linear Temporal Logic
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Linear Temporal Logic (LTL) Informally

Formula ϕ
Is evaluated on top of a single run of Kripke structure.
Express validity of APs in the states along the given run.

Temporal Operators of LTL
F ϕ — ϕ holds true eventually (Future).
G ϕ — ϕ holds true all the time (Globally).
ϕU ψ — ϕ holds true until eventually ψ holds true (Until).
X ϕ — ϕ is valid after execution of one transition (Next).
ϕR ψ — ψ holds true until ϕ ∧ ψ holds true (Release).
ϕW ψ — until, but ψ may never become true (Weak Until).
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Graphical Representation of LTL Temporal Operators

X ϕ : •−→
ϕ
•−→•−→•−→•−→• · · ·

ϕU ψ : ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ψ
•−→• · · ·

F ϕ : •−→•−→•−→•−→
ϕ
•−→• · · ·

G ϕ : ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
• · · ·

ϕR ψ : ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ϕ∧ψ
• −→• · · · or

ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ψ
•−→

ψ
• · · ·

ϕW ψ : ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ψ
•−→• · · · or

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
•−→

ϕ
• · · ·
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Syntax of LTL

Let AP be a set of atomic propositions.
If p ∈ AP, then p is an LTL formula.
If ϕ is an LTL formula, then ¬ϕ is an LTL formula.
If ϕ and ψ are LTL formulae, then ϕ ∨ ψ is an LTL formula.
If ϕ is an LTL formula, then X ϕ is an LTL formula.
If ϕ and ψ are LTL formulae, then ϕU ψ is an LTL formula.

Alternatively

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ
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Syntactic shortcuts
Propositional Logic

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)
ϕ⇒ ψ ≡ ¬ϕ ∨ ψ
ϕ⇔ ψ ≡ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

Temporal operators
F ϕ ≡ true U ϕ

G ϕ ≡ ¬F ¬ϕ
ϕR ψ ≡ ¬(¬ϕU ¬ψ)
ϕW ψ ≡ ϕU ψ ∨ G ϕ

Alternative syntax
Fϕ ≡ �ϕ
Gϕ ≡ �ϕ

Xϕ ≡ ◦ϕ
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Models of LTL Formulae

Model of an LTL formula
Let AP be a set of atomic propositions.
Model of an LTL formula is a run π of Kripke structure.

Notation
Let π = s0, s1, s2, . . ..
Suffix of run π starting at sk is denoted as
πk = sk , sk+1, sk+2, . . ..
K-th state of the run, is referred to as π(k) = sk .
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Semantics of LTL

Assumptions
Let AP be a set of atomic propositions.
Let π be a run of Kripke structure M = (S,T , I, s0).
Let ϕ, ψ be syntactically correct LTL formulae.
Let p ∈ AP denote atomic proposition.

Semantics

π |= p iff p ∈ I(π(0))
π |= ¬ϕ iff π 6|= ϕ

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ

π |= X ϕ iff π1 |= ϕ

π |= ϕU ψ iff ∃k.0 ≤ k, πk |= ψ and
∀i .0 ≤ i < k, πi |= ϕ
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Semantics of Other Temporal Operators

π |= F ϕ iff ∃k.k ≥ 0, πk |= ϕ

π |= G ϕ iff ∀k.k ≥ 0, πk |= ϕ

π |= ϕR ψ iff (∃k.0 ≤ k, πk |= ϕ ∧ ψ and
∀i .0 ≤ i < k, πi |= ψ)
or (∀k.k ≥ 0, πk |= ψ)

π |= ϕW ψ iff (∃k.0 ≤ k, πk |= ψ and
∀i .0 ≤ i < k, πi |= ϕ)
or (∀k.k ≥ 0, πk |= ϕ)
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LTL Model Checking

Verification Employing LTL
System is viewed as a set of runs.
System is satisfies LTL formula if and only if all system runs
satisfy the formula.
In other words, any run violating the formula is a witness that
the system does not satisfy the formula.

Lemma
If a finite state system does not satisfy an LTL formula then
this may be witnessed with a lasso-shaped run.
Run π is lasso-shaped if π = π1 · (π2)ω, where

π1 = s0, s1, . . . , sk
π2 = sk+1, sk+2, . . . , sk+n, where sk ≡ sk+n.

Note that πω denotes infinite repetition of π.
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Section

Automata-Based Approach to LTL Model Checking
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Languages of infinite words

Observation One
System is a set of (infinite) runs.
Also referred to as formal language of infinite words.

Observation Two
Two different runs are equal with respect to an LTL formula if
they agree in the interpretation of atomic propositions (need
not agree in the states).

Let π = s0, s1, . . ., then I(π) def⇐⇒ I(s0), I(s1), I(s2), . . ..

Observation Three
Every run either satisfies an LTL formula, or not.
Every LTL formula defines a set of satisfying runs.
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Reduction to Language Inclusion
Problem Formulation

Let the system under verification be given as Kripke structure
M = (S,T , I, s0) and system specification as LTL formula ϕ.

Does system M satisfies specification ϕ? (M
?
|= ϕ)

Reformulation as Language Problem
Let Σ = 2AP be an alphabet.
Language Lsys of all runs of system M is defined as follows.

Lsys = {I(π) | π is a run in M}.

Language Lϕ of runs satisfying ϕ is defined as follows.

Lϕ = {I(π) | π |= ϕ}.

Observation
System M satisfies specification ϕ if and only if Lsys ⊆ Lϕ.
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Lsys and Lϕ expressed by Büchi automaton

Theorem
For every LTL formula ϕ there exists (and can be efficiently
constructed) Büchi automaton Aϕ such that Lϕ = L(Aϕ).
Vardi and Wolper, 1986

Theorem
For every Kripke structure M = (S,T , I, s0) we can construct
Büchi automaton Asys such that Lsys = L(Asys).
Construction of Asys

Let AP be a set of atomic propositions.
Then Asys = (S, 2AP , s0, δ,S), where q ∈ δ(p, a) if and only if
(p, q) ∈ T ∧ I(p) = a.
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Synchronous Product of Büchi Automata

Theorem
Let A = (SA,Σ, sA, δA,FA) and B = (SB,Σ, sB, δB,FB) be
Büchi automata over the same alphabet Σ. Then we can
construct Büchi automaton A× B such that
L(A× B) = L(A) ∩ L(B).

Construction of A× B
A×B = (SA×SB×{0, 1},Σ, (sA, sB, 0), δA×B,FA×SB×{0})
(p′, q′, j) ∈ δA×B((p, q, i), a) for all

p′ ∈ δA(p, a)
q′ ∈ δB(q, a)
j = (i + 1) mod 2 if (i = 0 ∧ p ∈ FA) ∨ (i = 1 ∧ q ∈ FB)
j = i otherwise
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Synchronous Product of Büchi Automata – Task

Let
L1 = {w ∈ {a, b, c}ω | a ∈ inf (w)}
L2 = {w ∈ {a, b, c}ω | inf (w) = {b}}
L3 = L1 ∩ L2

Find Büchi automata for L1, L2 and L3.
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Synchronous Product of Büchi Automata – Simplification

Observation
For the purpose of LTL model checking, we do not need
general synchronous product of Büchi automata, since Büchi
automaton Asys is constructed in such a way that FA = SA,
i.e. it has all states accepting.
For such a special case the construction of product automata
can be significantly simplified.

Construction of A× B when FA = SA

A× B = (SA × SB,Σ, (sA, sB), δA×B,SA × FB)
(p′, q′) ∈ δA×B((p, q), a) for all

p′ ∈ δA(p, a)
q′ ∈ δB(q, a)
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Reduction to Büchi Emptiness Problem

Theorem
For every LTL formula ϕ it holds that co−L(Aϕ) = L(A¬ϕ).
By co−M we denote complement to the set of all words over
the alphabet of M.

Reduction of M |= ϕ to the emptiness of L(Asys × A¬ϕ)
M |= ϕ ⇐⇒ Lsys ⊆ Lϕ
M |= ϕ ⇐⇒ L(Asys) ⊆ L(Aϕ)
M |= ϕ ⇐⇒ L(Asys) ∩ co−L(Aϕ) = ∅
M |= ϕ ⇐⇒ L(Asys) ∩ L(A¬ϕ) = ∅
M |= ϕ ⇐⇒ L(Asys × A¬ϕ) = ∅
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Reduction to Accepting Cycle Detection

Theorem
Büchi automaton A = (S,Σ, s0, δ,F ) accepts a non-empty
language if and only if there is a state s ∈ F and words
w1,w2 ∈ Σ∗ such that s ∈ δ̂(s0,w1) a s ∈ δ̂(s,w2).
That is, the graph of Büchi automaton contains a reachable
accepting cycle (cycle through an accepting state).

Decision Procedure for M |= ϕ?
Build a product automaton (Asys × A¬ϕ).
Check the automaton for presence of an accepting cycle.
If there is a reachable accepting cycle then M 6|= ϕ.
Otherwise M |= ϕ.

IA169 System Verification and Assurance – 05 str. 44/45



Practicals and Homework – 05

Practicals
Specifying properties with Büchi Automata.
Specify properties using LTL.
Model-based verification using DIVINE model checker.

Homework
Model Peterson’s mutual exclusion protocol in ProMeLa.
State expected LTL properties of Peterson’s protocol.
Verify them using SPIN model checker.
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