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Checking Quality
@ Testing is incomplete, gives no guarantees of correctness.

@ Deductive verification is expensive.

Typical reasons for system failure
@ Unexpected or boundary input values.
@ Interaction of system components.
e Parallelism (difficult to test).

Model Checking
@ Automated verification process for ...

o ... parallel and distributed systems.
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Verification of Parallel and Reactive Programs
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Parallel Programs

Parallel Composition
@ Components concurrently contribute to the transformation of
a computation state.
@ The meaning comes from interleaving of actions
(transformation steps) of individual components.

Meaning Functions Do Not Compose
@ Meaning function of a composition cannot be obtain as
composition of meaning functions of participating
components.
@ The result depends on particular interleaving.
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Example of Incomposability

Parallel System

System: (y=x; y++; x=y) || (y=x; y++; x=y)

@ Input-output variable x

@ Meaning function of both processes is Ax->x+1.
@ The composition is: (Ax=->x+1)-(Ax->x+1).

o (Ax—>x+1)-(Ax->x+1) 0 =2

Two Different System Runs
@ State = (X,yl,yz)

° (0--) %= (0,0-) “H =%
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Properties of Parallel Programs

Observation

@ Specific timing of events related to interaction of components
is a form of (part of) input.

@ Asynchronous parallel system can be viewed as reactive as
there are unknown inputs at the time of execution.

Consequence

@ For parallel and reactive systems it is difficult to specify the
intended behaviour using pre- and post-conditions.
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Properties of Parallel/Reactive Programs

Examples of Specification

@ Events A and B happens before event C.

@ User is not allowed to enter a new value until the system
processes the previous one.

@ Procedure X cannot be executed simultaneously by processes
P and Q (mutual exclusion).

@ Every action A is immediately followed by a sequence of
actions B,C and D.

Turning into Formal Language
@ Use of Modal and Temporal Logics.
@ Amir Pnueli, 1977
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Deductive Verification for Modal and Temporal Logic

Observation

@ Systems similar to Hoare Logic may be built for modal and
temporal logic.

@ Even more demanding on personal.

@ For parallel and reactive systems exhibits similar disadvantages
as techniques built on top of pre- and post-conditions.

Model checking
@ Alternative way of formal verification of systems.
@ Specification given with formulae of some temporal logic.
@ Based on state-space exploration.
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Model Checking
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Model Checking

Model Checking — Overview
@ Build a formal model M of the system under verification.
@ Express specification as a formula ¢ of selected temporal logic.

e Decide, if M = ¢. That is, if M is a model of formula ¢.
(Hence the name.)

Optionally
@ As a side effect of the decision a counterexample may be
produced.
@ The counterexample is a sequence of states witnessing
violation (in the case the system is erroneous) of the formula.

e Model checking (the decision process) can be fully
automated for all finite (and some infinite) models of
systems.
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Model Checking — Schema

Formalization
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Automated Tools for Model Checking

Model Checkers

@ Software tools that can decide validity of a formula over a
model of system under verification.

e SPIN, UppAal, SMV, Prism, DIVINE ...

Modelling Languages
@ Processes described as extended finite state machines.

@ Extension allows to use shared or local variables and guard
execution of a transition with a Boolean expression.

@ Optionally, some transitions may be synchronised with
transitions of other finite state machines/processes.
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Modelling and Formalisation of Verified Systems
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Atomic Proposition

Reminder
@ System can be viewed as a set of states that are walked along
by executing instructions of the program.

@ State = valuation of modelled variables.

Atomic Propositions
@ Basic statements describing qualities of individual states, for
example: max(x,y) > 3.
e Validity of atomic proposition for a given state must be
decidable with information merely encoded by the state.

@ Amount of observable events and facts depends on amount of
abstraction used during the system modelling.
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Kripke Structure

Kripke Structure

@ Let AP be a set of atomic propositions.

e Kripke structure is a quadruple (S, T, /,s0), where
S is a (finite) set of states,

T C S x S is a transition relation,

I:S — 24P is an interpretation of AP.

So € S is an initial state.

Kripke Transition System
@ Let Act be a set of instructions executable by the program.

@ Kripke structure can be extended with transition labelling to
form a Kripke Transitions System.
o Kripke Transition System is a five-tuple (S, T,/, sp, L), where
o (S5, T,l, s) is Kripke Structure,
e L: T — Act is labelling function.
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Kripke Structure — Example

Kripke Structure

p,s,C

AP={P - Paid, S — Served, C — Coke, B — Beer}
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Kripke Structure — Example

Kripke Transition System

Takes Beer

Takes Coke P,S,C

AP={P - Paid, S — Served, C — Coke, B — Beer}

IA169 System Verification and Assurance — 05 str. 16/45



Run

@ Maximal path (such that it cannot be extended) in the graph
induced by Kripke Structure starting at the initial state.

o Let M= (S5, T, ,s) be a Kripke structure. Run is a sequence
of states m = sp, 51, 52, . . . such that Vi € No.(s;, si+1) € T.

Finite Paths and Runs

@ Some finite path 7 = 59, 51, S, . . . , Sk cannot be extended if
iﬂsk+1 € S.(Sk,5k+1) cT.

@ Technically, we will turn maximal finite path into infinite by
repeating the very last state.

@ Maximal path sp, ..., s, will be understood as infinite run
S0+« SkySkySky - --
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Implicit and Explicit System Description

Observation

@ Usually, Kripke structure that captures system behaviour is not
given by full enumeration of states and transitions (explicitly),
but it is given by the program source code (implicitly).

@ Implicit description tends to be exponentially more succinct.

State-Space Generation
@ Computation of explicit representation from the implicit one.

@ Interpretation of implicit representation must be formally
precise.

Practise
@ Programming languages do not have precise formal semantics.
@ Model checkers often build on top of modelling languages.
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En Example of Modelling Language — DVE

@ Finite Automaton

e States (Locations)

o Initial state

o Transitions Process B
o (Accepting states) RS

@ Transitions Extended with e e
b=b+1
o Guards

e Synchronisation and

o

. (@] 1

Value Passing all g

o Effect (Assignment) %o =
Ko}

@ Local Variables

sync c?2x
-~
o integer, byte
e channel
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Example of System Described in DVE Language

channel {byte} c[0];

process A { @
byte a;

state q1,92,93; w @
init q1;

trans

ql—q2 { effect a=a+1; },
q2—q3 { effect a=a+1; },
g3—ql { sync cla; effect a=0; };

} () ()

process B {
byte b,x;

state pl,p2,p3,p4; @
init p1;

trans
pl—p2 { effect b=b+1; }, @
p2—p3 { effect b=b+1; },

p3—p4 { sync c?x; },
p4—pl { guard x==b; effect b=0, x=0; }; @
}

system async; @
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Semantics Shown By Interpretation

1
State: []; A:[q1, a:0]; B:[p1, b:0, x:0] 1,00
0 (0.0): q1 — q2 { effect a = a+1; }
1(1.0): pl — p2 { effect b = b+1; }
Command:1

State: []; A:[ql, a:0]; B:[p2, b:1, x:0]
0 (0.0): q1 — g2 { effect a = a+1; }
1(1.1): p2 — p3 { effect b = b+1; }
Command:1

State: []; A:[ql, a:0]; B:[p3, b:2, x:0]
0 (0.0): q1 — g2 { effect a = a+1; }
Command:0

State: []; A:[q2, a:1]; B:[p3, b:2, x:0]
0 (0.1): q2 — g3 { effect a = a+1; }
Command:0

State: []; A:[q3, a:2]; B:[p3, b:2, x:0]

0 (0.2&1.2): g3 — ql { sync cla; effect a = 0; }
p3 — p4 { sync c?x; }

Command:0

State: []; A:[ql, a:0]; B:[p4, b:2, x:2]
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Formalising System Properties
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Specification as Languages of Infinite Words

Problem
@ How to formally describe properties of a single run?

@ How to mechanically check for their satisfaction?

Solution

Employ finite automaton as a mechanical observer of run.
@ Runs are infinite.

e Finite automata for infinite words (w-regular languages).
"]

Biichi acceptance condition — automaton accepts a word if it
passes through an accepting state infinitely many often.
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Automata over infinite words

Biichi automata
@ Biichi automaton is a tuple A= (%, S, s, d, F), where
e Y is a finite set of symbols,
S is a finite set f states,
s € S is an initial state,
§:S x ¥ — 25 is transition relation, and
F C S is a set of accepting states.

Language accepted by a Biichi automaton
@ Run p of automaton A over infinite word w = ajay... is a
sequence of states p = sg, s1,... such that sy = s and
Vi:si € (si—1, ai).
@ inf(p) — Set of states that appear infinitely many time in p.
@ Run p is accepting if and only if inf(p) N F # 0.

@ Language accepted with an automaton A is a set of all words
for which an accepting run exists. Denoted as L(A).
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Shortcuts in Transition Guards

Observation
o Let AP={X)Y,Z}.
e Transition labelled with {X} denotes that X must hold true
upon execution of the transition, while Y and Z are false.
o If we want to express that X is true, Z is false, and for Y we

do not care, we have to create two transitions labelled with
{X} and {X, Y}.

APs as Boolean Formulae
@ Transitions between the two same states may be combined
and labelled with a Boolean formula over atomic propositions.

Example
e Transitions {X}, {Y}, {X,Y}, {X,Z}, {Y,Z} a {X,Y,Z} can be
combined into a single one labelled with X vV Y.
o If there are no restrictions upon execution of the transition, it
may be labelled with true = X v = X.
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Task: Express with a Biichi automaton

System
@ Vending machine as seen before.
[+] z e 2{P757C>B}'

@ Paid ={AcX|PecA} Served={AcX|ScA} ...

Express the following properties
@ Vending machine serves at least one drink.

@ Vending machine serves at least one coke.

Vending machine serves infinitely many drinks.

Vending machine serves infinitely many beers.

Vending machine does not serve a drink without being paid.

After being paid, vending machine always serve a drink.
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Linear Temporal Logic
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Linear Temporal Logic (LTL) Informally

Formula ¢
@ Is evaluated on top of a single run of Kripke structure.

@ Express validity of APs in the states along the given run.

Temporal Operators of LTL
e Fp — ¢ holds true eventually (Future).
@ Gy — ¢ holds true all the time (Globally).
o U1t — ¢ holds true until eventually ¢ holds true (Until).
X ¢ — ¢ is valid after execution of one transition (Next).
© R — 1 holds true until ¢ A ¢ holds true (Release).
© W — until, but ¢» may never become true (Weak Until).
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Graphical Representation of LTL Temporal Operators

X
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Syntax of LTL

Let AP be a set of atomic propositions.
o If p € AP, then pis an LTL formula.
@ If ¢ is an LTL formula, then —¢ is an LTL formula.
@ If v and v are LTL formulae, then ¢ V4 is an LTL formula.
@ If ¢ is an LTL formula, then X ¢ is an LTL formula.
@ If v and v are LTL formulae, then ¢ U is an LTL formula.

Alternatively

pu=plopleVe | Xe|leUe
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Syntactic shortcuts

Propositional Logic
° Y ANth=(—p V)
=Y ="V
e peP=(p=Y)A (Y =)

Temporal operators
o Fp=trueUyp
e Gp=—-F-p
° 9 RY = (=9 U—)
e pWip=pUypV Gy

Alternative syntax
o Fp=oyp
o Gp=Up
o Xp=op
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Models of LTL Formulae

Model of an LTL formula
@ Let AP be a set of atomic propositions.

@ Model of an LTL formula is a run 7w of Kripke structure.

Notation
o Let m = sp,51,%, ...

@ Suffix of run 7 starting at sy is denoted as
k _
T = Sk Sk-+15 Sk+25 - - -

@ K-th state of the run, is referred to as m(k) = si.
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Semantics of LTL

Assumptions

@ Let AP be a set of atomic propositions.

o Let 7 be a run of Kripke structure M = (S, T, 1, sp).

@ Let ¢, ¥ be syntactically correct LTL formulae.

@ Let p € AP denote atomic proposition.

Semantics

TEPp
T E g
TEeVY
TEXp
TEeUY
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o

3k.0 < k, 7 }= 1) and
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str. 33/45



Semantics of Other Temporal Operators

T Fe
TEGp

TEeRY

TEeWY
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Jk.k > 0,75 =
Vk.k > 0,75 = ¢

(3k.0 < k, 7" = ¢ A9 and
Vi0 <i< k7' =)
or (Vk.k > 0,7 |= )

(3k.0 < k, 7% = and
Vi0 <i< k7' =)
or (Vk.k > 0,7 = )
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LTL Model Checking

Verification Employing LTL
@ System is viewed as a set of runs.

@ System is satisfies LTL formula if and only if all system runs
satisfy the formula.

@ In other words, any run violating the formula is a witness that
the system does not satisfy the formula.

Lemma
o If a finite state system does not satisfy an LTL formula then
this may be witnessed with a lasso-shaped run.
@ Run 7 is lasso-shaped if 7 = 71 - (m2)“, where
T1 = 50,51,---4Sk
Mo = Sk41, Sk+2, - - - y Sk+-n,» Where s = sp1p.

@ Note that 7 denotes infinite repetition of 7.
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Automata-Based Approach to LTL Model Checking
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Languages of infinite words

Observation One
@ System is a set of (infinite) runs.

@ Also referred to as formal language of infinite words.

Observation Two

@ Two different runs are equal with respect to an LTL formula if
they agree in the interpretation of atomic propositions (need
not agree in the states).

o Let m = sp,51,..., then I(m) &L, I(s0), I(s1), I(s2), - - ..

Observation Three
@ Every run either satisfies an LTL formula, or not.

@ Every LTL formula defines a set of satisfying runs.
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Reduction to Language Inclusion

Problem Formulation

@ Let the system under verification be given as Kripke structure
M = (S, T,I,sp) and system specification as LTL formula ¢.

?
@ Does system M satisfies specification ¢? (M = ¢)

Reformulation as Language Problem
o Let ¥ = 24P be an alphabet.
@ Language Lsys of all runs of system M is defined as follows.
Leys = {I(m) | 7 is a run in M}.

@ Language L, of runs satisfying ¢ is defined as follows.

Lo ={l(m) | ™ = ¢}

Observation
e System M satisfies specification ¢ if and only if Lg,s C L.
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Lss and L, expressed by Biichi automaton

Theorem
@ For every LTL formula ¢ there exists (and can be efficiently
constructed) Biichi automaton A, such that L, = L(A,).

@ Vardi and Wolper, 1986

Theorem
@ For every Kripke structure M = (S, T, /,sp) we can construct
Biichi automaton Agys such that Lgs = L(Agys).
@ Construction of Agys

o Let AP be a set of atomic propositions.
o Then Ays = (5,247, 5,6, S), where g € d(p, a) if and only if
(p,q) € TAI(p)=a.
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Synchronous Product of Biichi Automata

Theorem

o Let A= (SA,):,SA,(sA, FA) and B = (53,2,53,55, FB) be
Biichi automata over the same alphabet . Then we can
construct Biichi automaton A x B such that
L(A x B) = L(A)N L(B).

Construction of A x B
e AxB= (SA X 53 X {0, 1}, Z, (SA,SB, 0), 5A><87 FA X SB X {0})
° (p/7 q/a.j) € 5A><B((p7 q, I)7 a) for all

p/ € 6A(p7 a)

q' € ds(q, a)

j=({+1)ymod2 if(i=0ApeFa)V(i=1AqE€Fg)
j=i otherwise

IA169 System Verification and Assurance — 05 str. 40/45



Synchronous Product of Biichi Automata — Task

Let

o L1={we{ab,c}¥|acinf(w)}
o [2={w e {ab,c}¥|inf(w)={b}}
o [3=L1NIL2

Find Buchi automata for L1, L2 and L3.
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Synchronous Product of Biichi Automata — Simplification

Observation

@ For the purpose of LTL model checking, we do not need
general synchronous product of Biichi automata, since Biichi
automaton Ay is constructed in such a way that Fa = Sa,
i.e. it has all states accepting.

@ For such a special case the construction of product automata
can be significantly simplified.

Construction of A x B when F4 = 5S4
e Ax B= (SA X SB, Z, (SA,SB),(SAxg,SA X FB)

o (p',q') € daxs((p,q),a) for all
p/ € 5A(P, a)
q' € dg(q,a)
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Reduction to Biichi Emptiness Problem

Theorem
@ For every LTL formula ¢ it holds that co—L(A,) = L(A-).

@ By co—M we denote complement to the set of all words over
the alphabet of M.

Reduction of M = ¢ to the emptiness of L(Ass x A-,)

o Ml=yp < Lgs C L,

o M=y < L(Ags) C L(Ap)

o M=yp <= L(Ass)Nco—L(A,) =10
o ME g < L(Asys)NL(A,) =0

o M=y = L(Ays xAy) =1
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Reduction to Accepting Cycle Detection

Theorem
@ Biichi automaton A = (S, %, sp, 9, F) accepts a non-empty
language if and only if there is a state s € F and words
wi, wo € ¥ such that s € d(sp, wi) a s € i(s, wp).
@ That is, the graph of Biichi automaton contains a reachable
accepting cycle (cycle through an accepting state).

Decision Procedure for M = ©?

Build a product automaton (Asys x A-).

@ Check the automaton for presence of an accepting cycle.
o If there is a reachable accepting cycle then M [£ .

e Otherwise M = ¢.
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Practicals and Homework — 05

Practicals
@ Specifying properties with Biichi Automata.
@ Specify properties using LTL.
@ Model-based verification using DIVINE model checker.

Homework
@ Model Peterson’'s mutual exclusion protocol in ProMela.
@ State expected LTL properties of Peterson’s protocol.

@ Verify them using SPIN model checker.

IA169 System Verification and Assurance — 05 str. 45/45



