IA169 System Verification and Assurance

LTL Model Checking

Jiří Barnat

Motivation

Checking Quality

- Testing is incomplete, gives no guarantees of correctness.
- Deductive verification is expensive.

Typical reasons for system failure

- Unexpected or boundary input values.
- Interaction of system components.
- Parallelism (difficult to test).

Model Checking

- Automated verification process for ...
- ... parallel and distributed systems.

Section

Verification of Parallel and Reactive Programs

Parallel Programs

Parallel Composition

- Components concurrently contribute to the transformation of a computation state.
- The meaning comes from interleaving of actions (transformation steps) of individual components.

Meaning Functions Do Not Compose

- Meaning function of a composition cannot be obtain as composition of meaning functions of participating components.
- The result depends on particular interleaving.

Example of Incomposability

Parallel System

- System: (y=x; y++; x=y) || (y=x; y++; x=y)
- Input-output variable x
- Meaning function of both processes is $\lambda x x + 1$.
- The composition is: $(\lambda x x + 1) \cdot (\lambda x x + 1)$.
- $(\lambda x x + 1) \cdot (\lambda x x + 1) = 2$

Two Different System Runs

- State = (x, y_1, y_2)
- $\bullet \quad (0,-,-) \stackrel{y_1=x}{\longrightarrow} (0,0,-) \stackrel{y_2=x}{\longrightarrow} (0,0,0) \stackrel{y_1++}{\longrightarrow} \stackrel{x=y_1}{\longrightarrow} (1,1,0) \stackrel{y_2++}{\longrightarrow} \stackrel{x=y_2}{\longrightarrow} (\textcolor{red}{1},1,1)$
- $\bullet (0,-,-) \stackrel{y_1=x}{\longrightarrow} (0,0,-) \stackrel{y_1++}{\longrightarrow} \stackrel{x=y_1}{\longrightarrow} (1,1,-) \stackrel{y_2=x}{\longrightarrow} (1,1,1) \stackrel{y_2++}{\longrightarrow} \stackrel{x=y_2}{\longrightarrow} (2,1,2)$

Properties of Parallel Programs

Observation

- Specific timing of events related to interaction of components is a form of (part of) input.
- Asynchronous parallel system can be viewed as reactive as there are unknown inputs at the time of execution.

Consequence

 For parallel and reactive systems it is difficult to specify the intended behaviour using pre- and post-conditions.

Properties of Parallel/Reactive Programs

Examples of Specification

- Events A and B happens before event C.
- User is not allowed to enter a new value until the system processes the previous one.
- Procedure X cannot be executed simultaneously by processes
 P and Q (mutual exclusion).
- Every action A is immediately followed by a sequence of actions B,C and D.

Turning into Formal Language

- Use of Modal and Temporal Logics.
- Amir Pnueli, 1977

Deductive Verification for Modal and Temporal Logic

Observation

- Systems similar to Hoare Logic may be built for modal and temporal logic.
- Even more demanding on personal.
- For parallel and reactive systems exhibits similar disadvantages as techniques built on top of pre- and post-conditions.

Model checking

- Alternative way of formal verification of systems.
- Specification given with formulae of some temporal logic.
- Based on state-space exploration.

Section

Model Checking

Model Checking

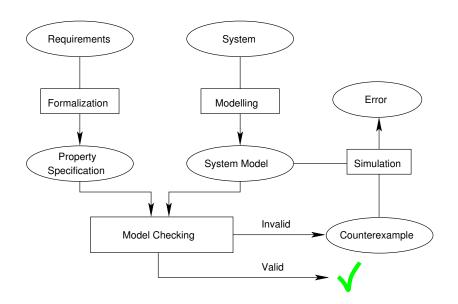
Model Checking – Overview

- Build a formal model \mathcal{M} of the system under verification.
- Express specification as a formula φ of selected temporal logic.
- Decide, if $\mathcal{M} \models \varphi$. That is, if \mathcal{M} is a model of formula φ . (Hence the name.)

Optionally

- As a side effect of the decision a counterexample may be produced.
- The counterexample is a sequence of states witnessing violation (in the case the system is erroneous) of the formula.
- Model checking (the decision process) can be fully automated for all finite (and some infinite) models of systems.

Model Checking – Schema



Automated Tools for Model Checking

Model Checkers

- Software tools that can decide validity of a formula over a model of system under verification.
- SPIN, UppAal, SMV, Prism, DIVINE ...

Modelling Languages

- Processes described as extended finite state machines.
- Extension allows to use shared or local variables and guard execution of a transition with a Boolean expression.
- Optionally, some transitions may be synchronised with transitions of other finite state machines/processes.

Section

Modelling and Formalisation of Verified Systems

Atomic Proposition

Reminder

- System can be viewed as a set of states that are walked along by executing instructions of the program.
- State = valuation of modelled variables.

Atomic Propositions

- Basic statements describing qualities of individual states, for example: $max(x, y) \ge 3$.
- Validity of atomic proposition for a given state must be decidable with information merely encoded by the state.
- Amount of observable events and facts depends on amount of abstraction used during the system modelling.

Kripke Structure

Kripke Structure

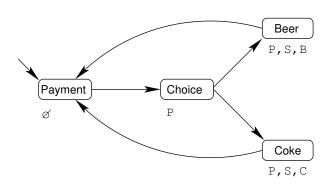
- Let AP be a set of atomic propositions.
- Kripke structure is a quadruple (S, T, I, s_0) , where
 - S is a (finite) set of states,
 - $T \subseteq S \times S$ is a transition relation,
 - $I: S \to 2^{AP}$ is an interpretation of AP.
 - $s_0 \in S$ is an initial state.

Kripke Transition System

- Let Act be a set of instructions executable by the program.
- Kripke structure can be extended with transition labelling to form a Kripke Transitions System.
- Kripke Transition System is a five-tuple $(S, T, I, s_0, \mathcal{L})$, where
 - (S, T, I, s_0) is Kripke Structure,
 - $\mathcal{L}: T \to Act$ is labelling function.

Kripke Structure – Example

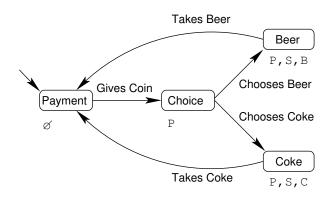
Kripke Structure



$$AP = \{P - Paid, S - Served, C - Coke, B - Beer\}$$

Kripke Structure – Example

Kripke Transition System



$$AP = \{P - Paid, S - Served, C - Coke, B - Beer\}$$

System Run

Run

- Maximal path (such that it cannot be extended) in the graph induced by Kripke Structure starting at the initial state.
- Let $M = (S, T, I, s_0)$ be a Kripke structure. Run is a sequence of states $\pi = s_0, s_1, s_2, \ldots$ such that $\forall i \in \mathbb{N}_0.(s_i, s_{i+1}) \in T$.

Finite Paths and Runs

- Some finite path $\pi = s_0, s_1, s_2, \dots, s_k$ cannot be extended if $\nexists s_{k+1} \in S.(s_k, s_{k+1}) \in T$.
- Technically, we will turn maximal finite path into infinite by repeating the very last state.
- Maximal path s_0, \ldots, s_k will be understood as infinite run $s_0, \ldots, s_k, s_k, s_k, \ldots$

Implicit and Explicit System Description

Observation

- Usually, Kripke structure that captures system behaviour is not given by full enumeration of states and transitions (explicitly), but it is given by the program source code (implicitly).
- Implicit description tends to be exponentially more succinct.

State-Space Generation

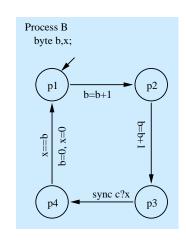
- Computation of explicit representation from the implicit one.
- Interpretation of implicit representation must be formally precise.

Practise

- Programming languages do not have precise formal semantics.
- Model checkers often build on top of modelling languages.

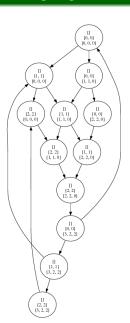
En Example of Modelling Language – DVE

- Finite Automaton
 - States (Locations)
 - Initial state
 - Transitions
 - (Accepting states)
- Transitions Extended with
 - Guards
 - Synchronisation and Value Passing
 - Effect (Assignment)
- Local Variables
 - integer, byte
 - channel



Example of System Described in DVE Language

```
channel {byte} c[0];
process A {
bvte a:
state q1,q2,q3;
init q1;
trans
q1\rightarrow q2 { effect a=a+1; },
q2\rightarrow q3 { effect a=a+1; },
q3\rightarrow q1 { sync c!a; effect a=0; };
process B {
byte b,x;
state p1,p2,p3,p4;
init p1:
trans
p1\rightarrow p2 { effect b=b+1; },
p2\rightarrow p3 { effect b=b+1; },
p3\rightarrow p4 { sync c?x; },
p4\rightarrow p1 { guard x==b; effect b=0, x=0; };
system async;
```



Semantics Shown By Interpretation

```
State: []; A:[q1, a:0]; B:[p1, b:0, x:0] 0 \langle 0.0 \rangle: q1 \rightarrow q2 { effect a = a+1; } 1 \langle 1.0 \rangle: p1 \rightarrow p2 { effect b = b+1; } Command:1
```

```
State: []; A:[q1, a:0]; B:[p2, b:1, x:0] 0 \ \langle 0.0 \rangle: q1 \rightarrow q2 { effect a = a+1; } 1 \ \langle 1.1 \rangle: p2 \rightarrow p3 { effect b = b+1; } Command:1
```

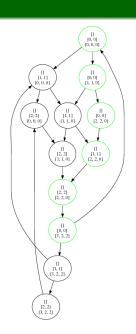
State: []; A:[q1, a:0]; B:[p3, b:2, x:0] 0 $\langle 0.0 \rangle$: q1 \rightarrow q2 { effect a = a+1; } Command:0

```
State: []; A:[q2, a:1]; B:[p3, b:2, x:0] 0 \langle 0.1 \rangle: q2 \rightarrow q3 { effect a = a+1; } Command:0
```

```
State: []; A:[q3, a:2]; B:[p3, b:2, x:0] 
0 \langle 0.2\&1.2 \rangle: q3 \rightarrow q1 { sync cla; effect a = 0; } 
p3 \rightarrow p4 { sync c?x; } 
Command:0
```

Command:0

State: []; A:[q1, a:0]; B:[p4, b:2, x:2]



Section

Formalising System Properties

Specification as Languages of Infinite Words

Problem

- How to formally describe properties of a single run?
- How to mechanically check for their satisfaction?

Solution

- Employ finite automaton as a mechanical observer of run.
- Runs are infinite.
- Finite automata for infinite words (ω -regular languages).
- Büchi acceptance condition automaton accepts a word if it passes through an accepting state infinitely many often.

Automata over infinite words

Büchi automata

- Büchi automaton is a tuple $A = (\Sigma, S, s, \delta, F)$, where
 - \bullet Σ is a finite set of symbols,
 - *S* is a finite set f states,
 - $s \in S$ is an initial state,
 - $\delta: \mathcal{S} \times \Sigma \to 2^{\mathcal{S}}$ is transition relation, and
 - $F \subseteq S$ is a set of accepting states.

Language accepted by a Büchi automaton

- Run ρ of automaton A over infinite word $w=a_1a_2\ldots$ is a sequence of states $\rho=s_0,s_1,\ldots$ such that $s_0\equiv s$ and $\forall i:s_i\in\delta(s_{i-1},a_i)$.
- $inf(\rho)$ Set of states that appear infinitely many time in ρ .
- Run ρ is accepting if and only if $inf(\rho) \cap F \neq \emptyset$.
- Language accepted with an automaton A is a set of all words for which an accepting run exists. Denoted as L(A).

Shortcuts in Transition Guards

Observation

- Let $AP = \{X,Y,Z\}$.
- Transition labelled with $\{X\}$ denotes that X must hold true upon execution of the transition, while Y and Z are false.
- If we want to express that X is true, Z is false, and for Y we do not care, we have to create two transitions labelled with $\{X\}$ and $\{X,Y\}$.

APs as Boolean Formulae

 Transitions between the two same states may be combined and labelled with a Boolean formula over atomic propositions.

Example

- Transitions $\{X\}$, $\{Y\}$, $\{X,Y\}$, $\{X,Z\}$, $\{Y,Z\}$ a $\{X,Y,Z\}$ can be combined into a single one labelled with $X \vee Y$.
- If there are no restrictions upon execution of the transition, it may be labelled with $true \equiv X \vee \neg X$.

Task: Express with a Büchi automaton

System

- Vending machine as seen before.
- $\Sigma = 2^{\{P,S,C,B\}}$
- $Paid = \{A \in \Sigma \mid P \in A\}, Served = \{A \in \Sigma \mid S \in A\}, \dots$

Express the following properties

- Vending machine serves at least one drink.
- Vending machine serves at least one coke.
- Vending machine serves infinitely many drinks.
- Vending machine serves infinitely many beers.
- Vending machine does not serve a drink without being paid.
- After being paid, vending machine always serve a drink.

Section

Linear Temporal Logic

Linear Temporal Logic (LTL) Informally

Formula φ

- Is evaluated on top of a single run of Kripke structure.
- Express validity of APs in the states along the given run.

Temporal Operators of LTL

- $F \varphi \varphi$ holds true eventually (Future).
- $G \varphi \varphi$ holds true all the time (Globally).
- $\varphi U \psi \varphi$ holds true until eventually ψ holds true (Until).
- $X \varphi \varphi$ is valid after execution of one transition (Next).
- $\varphi R \psi \psi$ holds true until $\varphi \wedge \psi$ holds true (Release).
- φ W ψ until, but ψ may never become true (Weak Until).

Graphical Representation of LTL Temporal Operators

Syntax of LTL

Let AP be a set of atomic propositions.

- If $p \in AP$, then p is an LTL formula.
- If φ is an LTL formula, then $\neg \varphi$ is an LTL formula.
- If φ and ψ are LTL formulae, then $\varphi \lor \psi$ is an LTL formula.
- If φ is an LTL formula, then $X \varphi$ is an LTL formula.
- If φ and ψ are LTL formulae, then $\varphi U \psi$ is an LTL formula.

Alternatively

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid X \varphi \mid \varphi U \varphi$$

Syntactic shortcuts

Propositional Logic

- $\bullet \varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$
- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$
- $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$

Temporal operators

- $F \varphi \equiv true U \varphi$
- $G \varphi \equiv \neg F \neg \varphi$
- $\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$
- $\bullet \varphi W \psi \equiv \varphi U \psi \vee G \varphi$

Alternative syntax

- $F\varphi \equiv \diamond \varphi$
- $G\varphi \equiv \Box \varphi$
- $X\varphi \equiv \circ \varphi$

Models of LTL Formulae

Model of an LTL formula

- Let AP be a set of atomic propositions.
- Model of an LTL formula is a run π of Kripke structure.

Notation

- Let $\pi = s_0, s_1, s_2, \ldots$
- Suffix of run π starting at s_k is denoted as $\pi^k = s_k, s_{k+1}, s_{k+2}, \dots$
- K-th state of the run, is referred to as $\pi(k) = s_k$.

Semantics of LTL

Assumptions

- Let AP be a set of atomic propositions.
- Let π be a run of Kripke structure $M = (S, T, I, s_0)$.
- Let φ , ψ be syntactically correct LTL formulae.
- Let $p \in AP$ denote atomic proposition.

Semantics

$$\pi \models p \quad \text{iff} \quad p \in I(\pi(0))$$

$$\pi \models \neg \varphi \quad \text{iff} \quad \pi \not\models \varphi$$

$$\pi \models \varphi \lor \psi \quad \text{iff} \quad \pi \models \varphi \text{ or } \pi \models \psi$$

$$\pi \models X \varphi \quad \text{iff} \quad \pi^1 \models \varphi$$

$$\pi \models \varphi U \psi \quad \text{iff} \quad \exists k.0 \le k, \pi^k \models \psi \text{ and}$$

$$\forall i.0 \le i < k, \pi^i \models \varphi$$

Semantics of Other Temporal Operators

$$\pi \models F \varphi \quad \text{iff} \quad \exists k.k \geq 0, \pi^k \models \varphi$$

$$\pi \models G \varphi \quad \text{iff} \quad \forall k.k \geq 0, \pi^k \models \varphi$$

$$\pi \models \varphi R \psi \quad \text{iff} \quad (\exists k.0 \leq k, \pi^k \models \varphi \land \psi \text{ and}$$

$$\forall i.0 \leq i < k, \pi^i \models \psi)$$

$$\text{or} \quad (\forall k.k \geq 0, \pi^k \models \psi)$$

$$\pi \models \varphi W \psi \quad \text{iff} \quad (\exists k.0 \leq k, \pi^k \models \psi \text{ and}$$

$$\forall i.0 \leq i < k, \pi^i \models \varphi)$$

$$\text{or} \quad (\forall k.k \geq 0, \pi^k \models \varphi)$$

LTL Model Checking

Verification Employing LTL

- System is viewed as a set of runs.
- System is satisfies LTL formula if and only if all system runs satisfy the formula.
- In other words, any run violating the formula is a witness that the system does not satisfy the formula.

Lemma

- If a finite state system does not satisfy an LTL formula then this may be witnessed with a lasso-shaped run.
- Run π is lasso-shaped if $\pi = \pi_1 \cdot (\pi_2)^{\omega}$, where

$$\pi_1 = s_0, s_1, \dots, s_k$$

 $\pi_2 = s_{k+1}, s_{k+2}, \dots, s_{k+n}$, where $s_k \equiv s_{k+n}$.

• Note that π^{ω} denotes infinite repetition of π .

Section

Automata-Based Approach to LTL Model Checking

Languages of infinite words

Observation One

- System is a set of (infinite) runs.
- Also referred to as formal language of infinite words.

Observation Two

- Two different runs are equal with respect to an LTL formula if they agree in the interpretation of atomic propositions (need not agree in the states).
- Let $\pi = s_0, s_1, \ldots$, then $I(\pi) \stackrel{def}{\iff} I(s_0), I(s_1), I(s_2), \ldots$

Observation Three

- Every run either satisfies an LTL formula, or not.
- Every LTL formula defines a set of satisfying runs.

Reduction to Language Inclusion

Problem Formulation

- Let the system under verification be given as Kripke structure $M = (S, T, I, s_0)$ and system specification as LTL formula φ .
- Does system M satisfies specification φ ? $(M \stackrel{?}{\models} \varphi)$

Reformulation as Language Problem

- Let $\Sigma = 2^{AP}$ be an alphabet.
- ullet Language L_{sys} of all runs of system M is defined as follows.

$$L_{sys} = \{I(\pi) \mid \pi \text{ is a run in } M\}.$$

• Language L_{φ} of runs satisfying φ is defined as follows.

$$L_{\varphi} = \{ I(\pi) \mid \pi \models \varphi \}.$$

Observation

ullet System M satisfies specification arphi if and only if $L_{sys}\subseteq L_{arphi}$.

L_{sys} and L_{arphi} expressed by Büchi automaton

Theorem

- For every LTL formula φ there exists (and can be efficiently constructed) Büchi automaton A_{φ} such that $L_{\varphi} = L(A_{\varphi})$.
- Vardi and Wolper, 1986

Theorem

- For every Kripke structure $M = (S, T, I, s_0)$ we can construct Büchi automaton A_{sys} such that $L_{sys} = L(A_{sys})$.
- Construction of A_{svs}
 - Let AP be a set of atomic propositions.
 - Then $A_{sys} = (S, 2^{AP}, s_0, \delta, S)$, where $q \in \delta(p, a)$ if and only if $(p, q) \in T \land I(p) = a$.

Synchronous Product of Büchi Automata

Theorem

• Let $A = (S_A, \Sigma, s_A, \delta_A, F_A)$ and $B = (S_B, \Sigma, s_B, \delta_B, F_B)$ be Büchi automata over the same alphabet Σ . Then we can construct Büchi automaton $A \times B$ such that $L(A \times B) = L(A) \cap L(B)$.

Construction of $A \times B$

i = i

- $A \times B = (S_A \times S_B \times \{0,1\}, \Sigma, (s_A, s_B, 0), \delta_{A \times B}, F_A \times S_B \times \{0\})$
- $(p', q', j) \in \delta_{A \times B}((p, q, i), a)$ for all $p' \in \delta_A(p, a)$ $q' \in \delta_B(q, a)$ $j = (i + 1) \mod 2$ if $(i = 0 \land p \in F_A) \lor (i = 1 \land q \in F_B)$

otherwise

Synchronous Product of Büchi Automata – Task

Let

- $L1 = \{ w \in \{ a, b, c \}^{\omega} \mid a \in inf(w) \}$
- $L2 = \{ w \in \{a, b, c\}^{\omega} \mid inf(w) = \{b\} \}$
- $L3 = L1 \cap L2$

Find Büchi automata for L1, L2 and L3.

Synchronous Product of Büchi Automata - Simplification

Observation

- For the purpose of LTL model checking, we do not need general synchronous product of Büchi automata, since Büchi automaton A_{sys} is constructed in such a way that $F_A = S_A$, i.e. it has all states accepting.
- For such a special case the construction of product automata can be significantly simplified.

Construction of $A \times B$ when $F_A = S_A$

- $A \times B = (S_A \times S_B, \Sigma, (s_A, s_B), \delta_{A \times B}, S_A \times F_B)$
- $(p', q') \in \delta_{A \times B}((p, q), a)$ for all $p' \in \delta_A(p, a)$ $q' \in \delta_B(q, a)$

Reduction to Büchi Emptiness Problem

Theorem

- For every LTL formula φ it holds that $co-L(A_{\varphi})=L(A_{\neg \varphi})$.
- By co-M we denote complement to the set of all words over the alphabet of M.

Reduction of $M \models \varphi$ to the emptiness of $L(A_{sys} \times A_{\neg \varphi})$

- $M \models \varphi \iff L_{svs} \subseteq L_{\varphi}$
- $M \models \varphi \iff L(A_{sys}) \subseteq L(A_{\varphi})$
- $M \models \varphi \iff L(A_{sys}) \cap co L(A_{\varphi}) = \emptyset$
- $M \models \varphi \iff L(A_{sys}) \cap L(A_{\neg \varphi}) = \emptyset$
- $M \models \varphi \iff L(A_{sys} \times A_{\neg \varphi}) = \emptyset$

Reduction to Accepting Cycle Detection

Theorem

- Büchi automaton $A = (S, \Sigma, s_0, \delta, F)$ accepts a non-empty language if and only if there is a state $s \in F$ and words $w_1, w_2 \in \Sigma^*$ such that $s \in \hat{\delta}(s_0, w_1)$ a $s \in \hat{\delta}(s, w_2)$.
- That is, the graph of Büchi automaton contains a reachable accepting cycle (cycle through an accepting state).

Decision Procedure for $M \models \varphi$?

- Build a product automaton $(A_{sys} \times A_{\neg \varphi})$.
- Check the automaton for presence of an accepting cycle.
- If there is a reachable accepting cycle then $M \not\models \varphi$.
- Otherwise $M \models \varphi$.

Practicals and Homework – 05

Practicals

- Specifying properties with Büchi Automata.
- Specify properties using LTL.
- Model-based verification using DIVINE model checker.

Homework

- Model Peterson's mutual exclusion protocol in ProMeLa.
- State expected LTL properties of Peterson's protocol.
- Verify them using SPIN model checker.