IA169 System Verification and Assurance

Bounded Model Checking

Jiří Barnat

Reminder - SAT and SMT

Satisfiability - SAT

• Finding a valuation of Boolean variables that makes a given formula of propositional logic true.

Satisfiability Modulo Theory – SMT

 Deciding satisfiability of a first-order formula with equality, predicates and function symbols that encode one or more theories.

Typical SMT Theories

- Unbounded integer and real arithmetic.
- Bounded integer arithmetic (bit-vectors).
- Theory of data structures (lists, arrays, ...).

Reminder – SAT and SMT Solvers

ZZZ aka Z3

- Tool developed by Microsoft Research.
- WWW interface http://www.rise4fun.com/Z3
- Binary API for use in other tools and applications.

SMT-LIB

- Standardised language for SMT queries.
- Freely available library with a SMT implementation.

Reminder – Satisfiability and Validity

Observation

• Formula is valid if and only if its negation is not satisfiable.

Consequence

 SAT and SMT solvers can be used as tools for proving validity of formulated statements.

Model Synthesis

- SAT solvers not only decide satisfiability of formulas, but for satisfiable formulas also give the valuation which makes the formula true.
- Unlike theorem provers, they give a "counterexample" in case the statement to be proven is false.

Section

Checking Safety Properties via SAT Reduction

Bounded Model Checking (BMC)

Hypothesis

 If the system contains an error, it can be reproduced with only a small number of controlled steps.

Method Idea

 If we use model checking for error detection, it is sensible to check whether an error (a violation of specification) appears within first k steps of execution.

Literature

- Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu: Symbolic Model Checking without BDDs. TACAS 1999: 193-207, LNCS 1579.
- Henry A. Kautz, Bart Selman: Planning as Satisfiability. Proceedings of the 10th European conference on Artificial intelligence (ECAl'92): 359-363, 1992, Kluwer.

Reduction of BMC to SAT

Prerequisites

- The set of prefixes of length k of all runs of a Kripke structure M can be encoded by a Boolean formula $[M]^k$.
- Violation of a safety property which can be observed within k steps of the system can be encoded as $[\neg \varphi]^k$.

Reduction to SAT

- We check the satisfiability of $[M]^k \wedge [\neg \varphi]^k$.
- Satisfiability indicates the existence of a counterexample of length k.
- Unsatisfiability shows non-existence of a counterexample of length k.

Kripkeho structure as a Boolean formula

Prerequisites

- Let M = (S, T, I) be a Kripke structure with initial state $s_0 \in S$.
- Arbitrary state $s \in S$ can be represented by a bit vector of size n, that is state $s = \langle a_0, a_1, \dots, a_{n-1} \rangle$.

Encoding M with Boolean Formulae

- Init(s) formula which is satisfiable for the valuation of variables $a_1, a_2, ..., a_n$ that describe the state s_0 .
- Trans(s, s') a formula which is satisfiable for a pair of state vectors s, s', iff the valuations $a_1, a_2, ..., a_n, a'_1, a'_2, ..., a'_n$ describe states between which a transition $(s, s') \in T$ exists.

Encoding Finite Runs of M

Description of System Runs of Length *k*

- Run of length k consists of k+1 states s_0, s_1, \ldots, s_k .
- The set of all runs of size k of the structure M is designated $[M]^k$ and described by the following formula:

$$[M]^k \equiv Init(s_0) \wedge \bigwedge_{i=1}^k Trans(s_{i-1}, s_i)$$

Example[M]³ \wedge [$\neg \varphi$]³

• $Init(s_0) \land Trans(s_0, s_1) \land Trans(s_1, s_2) \land Trans(s_2, s_3) \land \neg \varphi(s_3)$

Section

Completeness of BMC

Completeness of BMC for Detecting Safety Violations

Problem – Undetected Violation of a Safety Property

- The violation is not reachable using a path of length k.
- Paths shorter than k are not encoded in $[M]^k$.

Upper Bound on k

- If $k \ge d$ where d is the graph diameter, all possible error locations are covered.
- The diameter of the graph is bounded by 2^n , where n is the number of bits of the state vector.

Solution

• Executing BMC iteratively for each $k \in [0, d]$.

Automated Detection of Graph Diameter

Facts

- Asking the user is unrealistic.
- Safe upper bounds are extremely overstated.
- We would like the verification procedure itself to detect whether *k* should be increased further.

Skeleton of an Algorithm for Complete BMC

```
k=0 while (true) do

if (counterexample of length k exists)

then return "Invalid"

if (all states are reachable within k steps)

then return "Valid"

k=k+1
```

Notation I

Prerequisites

- Kripke structure M = (S, T, I).
- States are described by bit vectors of fixed length.
- Trans is a SAT representation of a binary relation T.

Path of Length n

$$path(s_{[0..n]}) \equiv \bigwedge_{0 \le i < n} Trans(s_i, s_{i+1})$$

Validity of Statement Q Along the Entire Path

$$all.Q(s_{[0..n]})$$

Notation II

A Loop-Free Path

$$loopFree(s_{[0..n]}) \equiv path(s_{[0..n]}) \land \bigwedge_{0 \leq i < j \leq n} s_i \neq s_j$$

Existence of a Path of Length n From s_0 to s_n

$$path_n(s_0, s_n) \equiv \exists s_1 \dots s_{n-1}.path(s_{[0..n]})$$

Shortest Path

$$shortest(s_{[0..n]}) \equiv path(s_{[0..n]}) \land \neg (\bigvee_{0 \le i \le n} path_i(s_0, s_n))$$

Equivalent Problem Formulation

Verification

• We would like to show that no state that would violate the specification φ is reachable from the initial configuration, i.e. we want to show that

$$\forall i. \forall s_0 \dots s_i. \Big(\mathit{Init}(s_0) \land \mathit{path}(s_{[0..i]}) \implies \varphi(s_i) \Big)$$

Alternatively

 We want to show that from an error state, the initial state is not reachable when going backwards

$$\forall i. \forall s_0 \dots s_i. \left(\mathit{Init}(s_0) \longleftarrow \mathit{path}(s_{[0..i]}) \land \neg \varphi(s_i) \right)$$

Equivalently

$$\forall i. \forall s_0 \dots s_i. \neg (Init(s_0) \land path(s_{[0..i]}) \land \neg \varphi(s_i))$$

Termination of BMC – Acyclic Paths

Termination Condition in the BMC Algorithm Skeleton

 No longer acyclic path from the initial state exists, that is, the following formula is unsatisfiable:

$$Init(s_0) \land IoopFree(s_{[0..i+1]})$$

 Holds symmetrically for backwards reachability from error states.

Solution 1

• not SAT (
$$loopFree(s_{[0..i+1]}) \land Init(s_0)$$
) \lor not SAT ($loopFree(s_{[0..i+1]}) \land \neg \varphi(s_{i+1})$)

Termination of BMC – Acyclic paths II

Higher Efficiency Termination Criterion

- When using backward reachability from $\neg \varphi$ states, paths that visit other $\neg \varphi$ states do not need to be considered.
- Symmetrically holds also for forward reachability with multiple initial states: for completeness detection, paths that visit other initial states do not need to be considered.

Solution 2

• not SAT(
$$loopFree(s_{[0..i+1]}) \land Init(s_0) \land all. \neg Init(s_{[1..i+1]})$$
)

v not SAT($loopFree(s_{[0..i+1]}) \land \neg \varphi(s_{i+1}) \land all. \varphi(s_{[0..i]})$)

BMC not starting with k = 0

Observation

- For small values of k, SAT queries give neither a counterexample nor enable termination.
- We want to start BMC with k > 0.

Reformulating the Counterexample Test

The original test for counterexample existence for a given k

$$SAT(Init(s_0) \land path(s_{[0..k]}) \land \neg \varphi(s_k))$$

needs to be changed so that we do not miss counterexamples shorter than the initial value of k.

• New test for the existence of a counterexample:

$$SAT(Init(s_0) \land path(s_{[0..k]}) \land \neg all.\varphi(s_{[0..k]}))$$

k-induction in BMC

Observation

- The tests can be re-formulated so that they resemble the structure of mathematical induction.
- TAUT is a tautology test (unsatisfiability of negation).

Base Case

• Test for counterexample existence.

$$SAT\Big(\neg \big(\mathit{Init}(s_o) \land \mathit{path}(s_{[0..i]}) \implies \mathit{all.} \varphi(s_{[0..i]})\Big)\Big)$$

Inductive Step

• Test for completeness.

```
 \begin{array}{l} \mathtt{TAUT} \Big( \neg \mathit{Init}(s_0) & \Longleftrightarrow \mathit{all.} \neg \mathit{Init}(s_{[1..(i+1)]}) \land \mathit{loopFree}(s_{[0..i+1]}) \Big) \\ \lor \\ \mathtt{TAUT} \Big( \ \mathit{loopFree}(s_{[0..i+1]}) \land \mathit{all.} \varphi(s_{[0..i]}) \ \Longrightarrow \ \varphi(s_{i+1}) \ \Big) \\ \end{array}
```

Acyclic vs Shortest Paths in BMC

Observation

- Graph diameter (d) is the length of the longest of the shortest paths between each pair of vertices in the graph.
- An acyclic path can be substantially longer than the graph diameter.

BMC with Shortest Paths

- BMC is correct if loopFree is replaced with shortest.
- The shortest predicate, however, needs quantifiers and is as such not a purely SAT application.

For more details, see ...

 Mary Sheeran, Satnam Singh, and Gunnar Stålmarck: Checking Safety Properties Using Induction and a SAT-Solver, FMCAD 2000, 108-125, LNCS 1954, Springer.

Section

LTL and BMC

LTL Verification with BMC

Observation 1

- LTL is only well-defined for infinite runs.
- For evaluating LTL on finite paths, we use three-value logic (true, false, cannot say).
- Validity of some LTL formulas cannot be decided on any finite path (eg. *GF a*).

Observation 2

- Cycles that consist of only a few states are unrolled by BMC to acyclic paths of length k.
- We allow encoding lasso-shaped paths.
- That is, (k, l)-cyclic paths.

(k,l)-cyclic paths

(k,l)-cyclic runs

• A run $\pi = s_0 s_1 s_2 \dots$ of a Kripke structure $M = (S, T, I, s_0)$ is (k, I)-cyclic if

$$\pi = (s_0 s_1 s_2 \dots s_{l-1})(s_l \dots s_k)^{\omega},$$

where $0 < l \le k$ a $s_{l-1} = s_k$.

Observation

- If π is (k, l)-cyclic, π is also (k + 1, l + 1)-cyclic.
- Treating finite paths as (k, k)-cyclic is incorrect (could create a non-existent run in M).
- Every path of length k is either acyclic or (k, l)-cyclic.

Semantics of LTL on Finite Prefixes of Runs

Semantics of LTL for Finite Prefixes

- Let π be a run of a Kripke structure M.
- k is given.
- $\pi = \pi^0$

$$\pi^{i} \models_{nl} X \varphi \quad \text{iff} \quad i < k \wedge \pi^{i+1} \models_{nl} \varphi$$

$$\pi^{i} \models_{nl} \varphi U \psi \quad \text{iff} \quad \exists j.i \leq j \leq k, \pi^{j} \models_{nl} \psi \text{ and}$$

$$\forall m.i \leq m < j, \pi^{i} \models_{nl} \varphi$$

Semantics of \models_k for LTL in BMC

- For (k, l)-cyclic paths, $\pi \models_k \varphi \iff \pi \models \varphi$ holds.
- For acyclic paths, $\pi \models_k \varphi \iff \pi^0 \models_{nl} \varphi$ holds.
- $\models_k \Longrightarrow \models_{k+1}$, \models_k approximates \models

BMC for LTL

Goal

- We construct a Boolean formula $[M, \varphi, k]$ which is satisfiable iff Kripke structure M has a run π such that $\pi \models_k \varphi$.
- $[M, \varphi, k] \equiv [M]^k \wedge [\varphi, k]$

Encoding

- $[M]^k$ encodes all paths of length k
- $[\varphi, k] \equiv \underline{\hspace{0.1cm}} [\varphi, k]_0 \vee \bigvee_{l=1}^k {}_{l} [\varphi, k]_0$
- $[\varphi, k]_0$ encodes that the path is acyclic and $\models_{\mathit{nl}} \varphi$
- $_I[\varphi, k]_0$ encodes that the path is (k, I)-cyclic and $\models \varphi$

LTL tricks in BMC

Fragment LTL-X

- Reduces the number of transitions (smaller SAT instance).
- Similar to partial order reduction.

For the Interested

- Keijo Heljanko: Bounded Model Checking for Finite-State Systems http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf
- Keijo Heljanko and Tommi Junttila: Advanced Tutorial on Bounded Model Checking
 - http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf

Section

Conclusions on BMC

Advantages of BMC

General

- Reduces to a standard SAT problem, advances in SAT solving help with BMC.
- Often finds counterexamples of minimal length (not always).
- Boolean formulas can be more compact than OBDD representation.

Verification of HW

Thanks to k-induction, a very successful method.

Verification of SW

 Currently, according to Software Verification Competition (TACAS 2014), BMC in connection with SMT is currently among the best software verification methods (actually falsification).

Downsides of BMC

General

- Not complete in general.
- Large SAT instances are still unsolvable.

Verification of SW

- Encoding an entire CFG as a SAT instance is currently unrealistic.
- K-induction cannot be used (the graph is incomplete, no back edges).
- Problems with dynamic data structure analysis.
- Loop analysis is hard.
- Inefficient for full arithmetic (partially solved by SMT).

Tools and food for thought...

Tools

- CBMC BMC for ANSI-C.
- ESBMC uses SMT, built on top of CBMC.
- LLBMC BMC for LLVM bitcode.

Food for Thought...

- What differentiates modern SMT-BMC from symbolic execution?
- Boundaries are not clear.

Practicals and Homework - 09

Practicals

- Follow LLBMC tutorial (http://llbmc.org/usage.html)
- Work with and compare LLBMC and ESBMC.
- Write erroneous program in C such that the error is not discovered with bounded MC approach.

Homework

 Study structure and results of Software Verification Competition (TACAS)