
IA169 System Verification and Assurance

CEGAR and Abstract Interpretation

Jiří Barnat

Program Analysis

Goals of Program Analysis
Deduce program properties from the program source code
and ...
... employ them for program optimisation.
... employ them for program verification.

Undecidability
Validity of all interesting program properties written in
general programming language is algorithmically
undecidable.
Henry Gordon Rice (1953) – Rice’s Theorems.
Alan Turing (1936) – Halting Problem.

IA169 System Verification and Assurance – 10 str. 2/27

Undecidable – So what now?

Abstraction
To hide details in order to simplify the analysis.
Aims at correct, even if incomplete solution.

Using Abstraction
To build (typically finite state) model of system under
verification. (Followed, e.g., by model checking approach
to verification.)
System execution within the context of abstraction –
Abstract Interpretation.

Recall Other Approaches
Fixed input set of values (Testing).
Limited exploration of the full state space (Bounded MC).
Practical undecidability (Symbolic Execution).

IA169 System Verification and Assurance – 10 str. 3/27

Section

Data and Predicate Abstraction

IA169 System Verification and Assurance – 10 str. 4/27

Data Abstraction

Motivation
State space explosion due to large data domains.
Reduction employing principle of domain testing, i.e.
replacing original data domain with a data domain with
less number of members.

Terminology
Abstraction: mapping concrete states to abstract ones.
Concretisation: mapping abstract states to set of concrete
states.

Example of Data Abstraction
Int -> { Even, Odd }
Concrete state: 〈 PC:12, A:15, B:0 〉
Abstract state: 〈 PC:12, A:Odd, B:Even 〉

IA169 System Verification and Assurance – 10 str. 5/27

Abstract Transition System

Transitions in Concrete and Abstract Semantics
Statement in program code, line 12: A := A+A
In concrete semantics:
〈PC:12, A:15, B:0〉 −→ 〈PC:13, A:30, B:0〉
in abstract semantics:
〈PC:12, A:Odd, B:Even〉 −→ 〈PC:13, A:Even, B:Even〉

Non-Determinism in Abstract Transition System
Abstract state: 〈PC:13, A:Even, B:Even〉
Statement in program code, line 13: A := A div 2
〈PC:13, A:Even, B:Even〉 −→
〈PC:14, A:Even, B:Even〉
〈PC:14, A:Odd, B:Even〉

IA169 System Verification and Assurance – 10 str. 6/27

Relation of Abstract and Concrete Transition Systems

Over-Approximation
Every run of concrete system is present in concretisation
of some abstract run (run of abstracted transition system).
There may exist runs that are present in concretisation of
some abstract run, but are not allowed in concrete
transition system.

Under-Approximation
Every run present in concretisation of any abstract run is
an existing run of concrete transition system.
There may exist runs of concrete transition systems that
are not present in concretisation of any abstract run.

IA169 System Verification and Assurance – 10 str. 7/27

Verification of Approximated Transition Systems

Notation
ATS – Abstract Transition System
CTS – Concrete Transition System

Verification of Over-Approximated Systems
Absence of error in ATS proves absence of error in CTS.
Error in ATS may, but need not indicate error in CTS.
Error in ATS that is not an error in CTS, is referred to as
false positive (spurious error, false alarm).

Verification of Under-Approximated Systems
Error in ATS proves presence of error in CTS.
Absence of error in ATS does not prove absence of error
in CTS.
Error in CTS that is not present in ATS is referred to as
false negative.

IA169 System Verification and Assurance – 10 str. 8/27

Example – Concrete Semantics

Task
Is error state reachable in the following program?
% denotes modulo operation, A in an integral variable

Source-code Value ofA in concrete semantics
after execution of program statement

1 read(A);
2 A = A % 2;
3 A = A + 1;
4 if (A==0)
5 error;
6 else
7 return;

[int]
[0] [1]
[1] [2]
<false> <false>

<ret> <ret>

IA169 System Verification and Assurance – 10 str. 9/27

Example – Data Abstraction

Task
Is error state reachable in the following program?
A is abstracted into parity domain {even,odd}.

Source-code Value of A in abstract semantics
after execution of program statement

1 read(A);
2 A = A % 2;
3 A = A + 1;
4 if (A==0)
5 error;
6 else
7 return;

[even] [odd]
[even] [odd]
[odd] [even]
<false> <true/false>

<error>

<ret> <ret>

IA169 System Verification and Assurance – 10 str. 10/27

Predicate Abstraction

Predicate Abstraction
Predicates – Boolean expressions about variable values.
Example of definition of abstract transition system:
〈Program Counter, Validity of selected predicates〉

Amount of Abstraction
Amount of predicates influences the precision of
abstraction.
Less predicates big ambiguity, smaller state space.
More predicates increased precision, bigger state space.

IA169 System Verification and Assurance – 10 str. 11/27

Task

Task
For the given program code and set of predicates, draw
the abstract transition system formed using predicate
abstraction.
Check if there is path in your ATS that is not a spurious
run and leads to an error state.

1 read(A);
2 A = A % 2;
3 A = A + 1;
4 if (A==0)
5 error;
6 else
7 return;

a) P1 ≡ A = 0

b) P1 ≡ A = 0,
P2 ≡ A ≥ 0

IA169 System Verification and Assurance – 10 str. 12/27

Remarks on Predicate Abstraction

Analysis of Abstract Runs Leading to Error
Decision about validity of the run (Is it a false alarm?)
Deduction of new predicates to make abstraction more
precise.

Size of Abstract Transition System
The size of the state space grows exponentially with the
number of predicates.

Possible Solution
Predicates are bound to particular program locations.

IA169 System Verification and Assurance – 10 str. 13/27

Section

CEGAR Approach

IA169 System Verification and Assurance – 10 str. 14/27

Counter-Example Guided Abstraction Refinement

Principle of CEGAR Approach
Given an initial set of predicates, system is abstracted
with predicate abstraction.
Abstract transition system (over-approximation) is verified
with a model checking procedure.
In the case a reported counterexample is find spurious, it
is analysed in order to deduce new predicates and refine
predicate abstraction.
Procedure repeats until real counterexample is find or
system is successfully verified.

Notes
Deducing new predicates is very difficult.
Often done within model checking procedure (on-the-fly).
Berkeley Lazy Abstraction Software Verification Tool
(BLAST).

IA169 System Verification and Assurance – 10 str. 15/27

Schema of CEGAR Approach

Abstract

Is c−example

spurious?

Abstract

Model

Refined

Model

Counter

Example

Is property

satisfied?

System is valid

No

System is invalidRefine

Model

Yes

System

Property

Yes

No

IA169 System Verification and Assurance – 10 str. 16/27

Section

Basics of Abstract Interpretation and
Static Analysis of Programs

IA169 System Verification and Assurance – 10 str. 17/27

Program Analysis by Abstract Interpretation

Program Representation – Flow Graph
"Special version" of Control-Flow Graph.
Every edge is either guarded with a single guard or defines
a single assignment.

Goal
Compute properties of individual vertices of the
flow-graph.

Goal Examples
Deduce range of values a particular variable may take in a
given program location.
Compute a set of live variables in a given program
location.
. . .

IA169 System Verification and Assurance – 10 str. 18/27

A General View on Abstract Interpretation

Property Decomposition
The property to be verified by general program analysis
procedure can be decomposed into local data values
assigned to individual vertices of the (control-)flow graph.
The result of verification is compound or deduced from
the values local to the flow-graph vertices.

Value Improvement
It is defined how an edge of the (control-)flow graph
improves (locally updates) the decomposed value of the
property to be verified.
Application of local update functions gradually
(monotonously) improve (approximate) the overall
solution.

IA169 System Verification and Assurance – 10 str. 19/27

General Algorithm for Computing Abstract Interpretation

Initialisation
Initially, a suitable value is assigned to every vertex.
Every edge of the graph is marked as unprocessed.

Computation
Pick an unprocessed edge of the graph and perform the
local update relevant to the edge and associated vertices.
If the update improved the solution, mark the edge as
unprocessed again.
Repeat until there are unprocessed edges, i.e. until overall
fix-point is reached.

IA169 System Verification and Assurance – 10 str. 20/27

Example – Computing Live Variables

Setup
Initial value associated with graph vertices is ∅.
Every edge from vertex u to vertex v updates value
associated with the vertex u as follows:

V (u) = V (u) ∪
(
V (v) \ assigned(u, v) ∪ used(u, v)

)
,

where V (x) denotes value associated with vertex x ,
assigned(u, v) and used(u, v) denote variables redefined
and used along the edge (u, v), respectively.

Observation
In every moment of computation there is some
(approximating) solution to the verified property.
Reaching a fix-point indicate, no more information can be
deduced by program analysis in the current setup.

IA169 System Verification and Assurance – 10 str. 21/27

Abstract Interpretation

Observation
The procedure presented on previous slides is quite
general. Choosing proper setup may result in verification
(computation) of many interesting program properties.
Often this is combined with some data abstraction for
variables.
May be performed on partially unwind graphs.
Generally referred to as to abstract interpretation.

Parameters
What abstract domain is used.
Direction of update function (forward, backward, both).
What does update function do.
How are the values merged over multiple incoming edges.
Order of processing of unprocessed edges.
Termination detection.

IA169 System Verification and Assurance – 10 str. 22/27

Relevant Questions of Abstract Interpretation

Is there a fix-point?
Often the composition of domains of values associated to
vertices forms a complete lattice.
Knaster-Tarski theorem says that every monotonous
function over such a domain has a fix point.

Does computation terminates?
If there is no infinitely ascending sequence of possible
solutions in the composition of local domains, then yes.
Otherwise, need not terminate.

IA169 System Verification and Assurance – 10 str. 23/27

Abstract Interpretation and Widening

Widening
Auxiliary transformation of intermediate results such that
it preserves correctness, and at the same times prevents
existence of long (possibly infinite) ascending sequence of
values in the corresponding domain.

Example of widening
Let be given boundaries of precision in which we want to
know the range of possible values of some variable.
Beyond the precision boundaries values will be extended
to infinity, i.e. +∞ or −∞.
Sequence
[0,1] ⊂ [0,2] ⊂ [0,3] ⊂ [0,4] ⊂ [0,5] ⊂ [0,6] ...

will for precision bound [0,3] turn into:
[0,1] ⊂ [0,2] ⊂ [0,3] ⊂ [0,+∞]

IA169 System Verification and Assurance – 10 str. 24/27

Abstract Interpretation and Narrowing

Narrowing
Using widening may lead to very imprecise results.
Widening can be used to accelerate analysis of cycles.
After widening-based analysis of cycle, the values are
made more precised with narrowing (similar but dual
technique).

Example
Interval [0,+∞] will after narrowing shrink to [0,n].

Commentary
Precise usage of widening and narrowing is beyond the
scope of this lecture.

IA169 System Verification and Assurance – 10 str. 25/27

Other Notes Related to Abstract Interpretation

Other Corners of Program Analysis
Inter-procedural analysis.
Analysis of parallel programs.
Generation of invariants.
Pointer analysis and analysis of dynamic memory
structures.
...

CPA checker
The Configurable Software-Verification Platform
http://cpachecker.sosy-lab.org/
Very successful competitor in Software Verification
Competition.

IA169 System Verification and Assurance – 10 str. 26/27

http://cpachecker.sosy-lab.org/

Practicals and Homework – 10

Practicals

Catch-up time.

Wanna Chalenge?

Get acquainted with CPAchecker (https:
//github.com/dbeyer/cpachecker/blob/trunk/README.txt)

Comment counterexample report (http://cpachecker.
sosy-lab.org/counterexample-report/ErrorPath.0.html)

Homework

Install and try BLAST verification tool.

IA169 System Verification and Assurance – 10 str. 27/27

https://github.com/dbeyer/cpachecker/blob/trunk/README.txt
https://github.com/dbeyer/cpachecker/blob/trunk/README.txt
http://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html
http://cpachecker.sosy-lab.org/counterexample-report/ErrorPath.0.html

