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Motivation example

Fail-repair system

idle working done

repair error

start end

bug

service

ok

reset

What are the properties of the model?

G (working =⇒ F done) NO

G (working =⇒ F error) NO

FG (working ∨ error ∨ repair) NO

IA169 System Veri�cation and Assurance � 12 2/31



The example with probability

Fail-repair system

idle working done

repair error

start

0.95

end

bug
0.05

service

ok

reset

What is the probability of reaching �done� from �working� with no
visit of �error�?

What is the probability of reaching �done� from �working� with at
most one visit of �error�?

What is the probability of reaching �done� from �working�?
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Section

Discrete-time Markov Chains (DTMC)
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Probabilistic models

Discrete-time Markov Chains (DTMC)

Standard model for probabilistic systems.

State based model with probabilities on branching.

Based on the current state, the succeeding state is given by a
discrete probability distribution.

Markov property (�memorylessness�) � only the current state
determines the successors (the past states are irrelevant).

Probabilities on outgoing edges sums to 1 for each state.

Hence, each state has at least one outgoing edge (�no deadlock�).
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DTMC examples

Model of a queue

0 1 2 3 4

1/3 1/3 1/3 1/3

2/32/32/32/3

2/3 1/3

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

What if a new items comes with probability p = 1/2 and an item is
consumed with probability q = 2/3?
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DTMC examples

Model of the new queue

0 1 2 3 4

p p(1− q) p(1− q) p(1− q)

qq(1− p)q(1− p)q(1− p)

1− p 1− q(1− p)(1− q) (1− p)(1− q) (1− p)(1− q)
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DTMC - formal de�nition

Deterministic Time Markov Chain is given by

a set of states S ,

an initial state s0 of S ,

a probability matrix P : S × S → [0, 1], and

an interpretation of atomic propositions I : S → AP.

1 2 5

4 3

1 0.95

0.05

1

1 1
P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


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Back to our questions

Fail-Repair System

idle working done

repair error

1 0.95
0.05

1

1

1

What is the probability of reaching �done� from �working� with
no visit of �error�?

What is the probability of reaching �done� from �working� with
at most one visit of �error�?

What is the probability of reaching �done� from �working�?
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Markov chain analysis

Transient analysis

distribution after k-steps

reaching/hitting probability

hitting time

Long run analysis

probability of in�nite hitting

stationary (invariant) distribution

mean inter visit time

long run limit distribution
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Section

Property Speci�cation
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Property speci�cation languages

Recall some non-probabilistic speci�cation languages:

LTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ

CTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Syntax of CTL∗

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E ψ
path formula ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψU ψ
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Property speci�cation languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | P./bψ

path formula ψ ::= X ϕ | ϕU ϕ | ϕU≤k ϕ

where
b ∈ [0, 1] is a probability bound,
./∈ {≤, <,≥, >}, and
k ∈ N is a bound on the number of steps.

A PCTL formula is always a state formula.

αU≤k β is a bounded until saying that α holds until β within k steps.
For k = 3 it is equivalent to β ∨ (α ∧ X β) ∨ (α ∧ X (β ∨ α ∧ X β)).

Some tools also supports P=?ψ asking for the probability that the
speci�ed behaviour will occur.
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PCTL examples

We can also use derived operators like G , F , ∧, ⇒, etc.

idle working done

repair error

1 0.95
0.05

1

1

1

Probabilistic reachability P≥1(F done )

probability of reaching the state done is equal to 1

Probabilistic bounded reachability P>0.99(F≤6 done )

probability of reaching the state done in at most 6 steps is > 0.99

Probabilistic until P<0.96( (¬error)U (done) )

probability of reaching done with no visit of error is less than 0.96
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Qualitative vs. quantitative properties

Qualitative PCTL properties
P./b ψ where b is either 0 or 1

Quantitative PCTL properties
P./b ψ where b is in (0, 1)

In DTMC where zero probability edges are erased, it holds that
P>0(X ϕ) is equivalent to EX ϕ

there is a next state satisfying ϕ

P≥1(X ϕ) is equivalent to AX ϕ
the next states satisfy ϕ

P>0(F ϕ) is equivalent to EF ϕ
there exists a �nite path to a state satisfying ϕ

but

P≥1(F ϕ) is not equivalent to AF ϕ

There is no CTL formula equivalent to P≥1(F ϕ),
and no PCTL formula equivalent to AF ϕ.
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How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Probability in the k-th state when starting in 1[
1 0 0 0 0

]
× P =

[
0 1 0 0 0

][
1 0 0 0 0

]
× P2 =

[
0 0 0.05 0 0.95

][
1 0 0 0 0

]
× P3 =

[
0 0 0 0.05 0.95

][
1 0 0 0 0

]
× P4 =

[
0 0.05 0 0 0.95

][
1 0 0 0 0

]
× P5 =

[
0 0 0.0025 0 0.9975

]
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How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Probability of being in 5 or 2 in the k-th state

P ×
[
0 1 0 0 1

]T
=
[
1 0.95 0 1 1

]T
P2 ×

[
0 1 0 0 1

]T
=
[
0.95 0.95 1 0.95 1

]T
P3 ×

[
0 1 0 0 1

]T
=
[
0.95 1 0.95 0.95 1

]T
P4 ×

[
0 1 0 0 1

]T
=
[
1 0.9975 0.95 1 1

]T
P5 ×

[
0 1 0 0 1

]T
=
[
0.9975 0.9975 1 0.9975 1

]T
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Unbounded reachability - optional slide

Unbounded reachability
Let p(s,A) be the probability of reaching a state in A from s.

It holds that:

p(s,A) = 1 for s ∈ A

p(s,A) =
∑

s′∈succ(s) P(s, s ′) ∗ p(s ′,A) for s 6∈ A

where succ(s) is a set of successors of s and P(s, s ′) is the
probability on the edge from s to s ′.

Theorem

The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.
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Section

Long Run Analysis
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Long run analysis

1 2 5

4 3

1 0.95

0.05

1
1 1

Recall that we reach the state 5(done) with probability 1.

1 2 5

4 3

1 0.95

0.05

1
1

0.5

0.5

What are the states visited in�nitely often with probability 1?
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Transient and recurrent states

De�nitions

A state of DMTC is called transient i� there is a positive
probability that the system will not return back to this state.

A state s of DMTC is called recurrent i�, starting from s, the
system eventually returns back to the s with probability 1.

Theorem

Every transient state is visited �nitely many times with
probability 1.

Each recurrent state is with probability 1 either not visited or
visited in�nitely many times.1

1This holds only in DTMC models with �nitely many states.
IA169 System Veri�cation and Assurance � 12 21/31



Transient vs. recurrent states

Which states are transient? Which states are recurrent?

Decompose the graph
representation onto
strongly connected
components.

Theorem 1

A state is recurrent if and only if it is in a bottom strongly
connected component. All other states are transient.

1This holds only in DTMC models with �nitely many states.
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Irreducible Markov Chain

For the sake of in�nite behaviour, we will concentrate on bottom

strongly connected components only.

De�nition

A Markov chain is said to be irreducible if every state can be
reached from every other state in a �nite number of steps.

Theorem

A Markov chain is irreducible if and only if its graph
representation is a single strongly connected component.

Corollary

All states of a �nite irreducible Markov chain are recurrent.
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Stationary (Invariant) Distribution

De�nition

Let P be the transition matrix of a DTMC and ~λ be a
probability distribution on its states. If

~λP = ~λ,

then ~λ is a stationary (or steady-state or invariant or
equilibrium) distribution of the DTMC.

Question:
How many stationary distributions can a Markov chain have?
Can it be more than one?
Can it be none?
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Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard's
walk

1 2 3 4
1/2 1/2

1 1

1/2

1/2

both (1, 0, 0, 0) and (0, 0, 0, 1) are stationary distributions.

But, this is not an irreducible Markov chain.
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Stationary Distributions

Theorem

In every �nite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?
Theorem

For each �nite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a �nite
irreducible Markov chain?
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Stationary Distribution & Cut-sets

Again, we can construct a set of equations that express the result.

Theorem

Let P be a transition matrix of a �nite irreducible DTMC and
~π = (π1, π2, . . . , πn) be a stationary distribution corresponding
to P . For any state i of the DTMC, we have∑

j 6=i

πjPj ,i =
∑
j 6=i

πiPi ,j .
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Mean Portion of Visited States and Inter Visit Time

Theorem

Let us have a �nite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = limn→∞E ( # of visits of state i during the �rst n steps)/n.

Let us have a �nite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = 1/mi

where mi is the mean inter visit time of state i .
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Aperiodic Markov Chains

For example:

aperiodic periodic

De�nition

A state s is periodic if there exists an integer ∆ > 1 such that
length of every path from s to s is divisible by ∆.

A Markov chain is periodic if any state in the chain is periodic.

A state or chain that is not periodic is aperiodic.
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Aperiodic Markov Chains

Theorem

Let us have a �nite aperiodic irreducible DTMC and the
unique stationary distribution ~π. It holds that

~π = limn→∞~λP
n

where ~λ is an arbitrary distribution on states.

Q: What this is good for?
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DTMC Extensions - Communication and Nondeterminism

Last remark on some DTMC extensions.

Modules and synchronisation

modules

actions

rewards

Decision extension

Markov Decision Processes (MDP)

Pmin and Pmax properties
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