IA169 System Verification and Assurance

Verification of Systems with Probabilities

Vojtěch Řehák

Motivation example

Fail-repair system

What are the properties of the model?

- G (working $\Longrightarrow F$ done) NO
- G (working $\Longrightarrow F$ error) NO
- $F G$ (working \vee error \vee repair) NO

The example with probability

Fail-repair system

- What is the probability of reaching "done" from "working" with no visit of "error"?
- What is the probability of reaching "done" from "working" with at most one visit of "error"?
- What is the probability of reaching "done" from "working'?

Section

Discrete-time Markov Chains (DTMC)

Discrete-time Markov Chains (DTMC)

- Standard model for probabilistic systems.
- State based model with probabilities on branching.
- Based on the current state, the succeeding state is given by a discrete probability distribution.
- Markov property ("memorylessness") - only the current state determines the successors (the past states are irrelevant).
- Probabilities on outgoing edges sums to 1 for each state.
- Hence, each state has at least one outgoing edge ("no deadlock").

DTMC examples

Model of a queue

Queue for at most 4 items. In every time tick, a new item comes with probability $1 / 3$ and an item is consumed with probability $2 / 3$.

What if a new items comes with probability $p=1 / 2$ and an item is consumed with probability $q=2 / 3$?

DTMC examples

Model of the new queue

DTMC - formal definition

Deterministic Time Markov Chain is given by

- a set of states S,
- an initial state s_{0} of S,
- a probability matrix $P: S \times S \rightarrow[0,1]$, and
- an interpretation of atomic propositions I:S $\rightarrow A P$.

Back to our questions

Fail-Repair System

- What is the probability of reaching "done" from "working" with no visit of "error"?
- What is the probability of reaching "done" from "working" with at most one visit of "error"?
- What is the probability of reaching "done" from "working"?

Markov chain analysis

Transient analysis

- distribution after k-steps
- reaching/hitting probability
- hitting time

Long run analysis

- probability of infinite hitting
- stationary (invariant) distribution
- mean inter visit time
- long run limit distribution

Section

Property Specification

Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|X \varphi| \varphi \cup \varphi
$$

CTL formulae

$$
\varphi::=p|\neg \varphi| \varphi \vee \varphi|E X \varphi| E[\varphi \cup \varphi] \mid E G \varphi
$$

Syntax of CTL*

state formula $\quad \varphi::=p|\neg \varphi| \varphi \vee \varphi \mid E \psi$
path formula $\quad \psi::=\varphi|\neg \psi| \psi \vee \psi|X \psi| \psi \cup \psi$

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula

$$
\begin{aligned}
& \varphi::=p|\neg \varphi| \varphi \vee \varphi \mid P_{\bowtie b} \psi \\
& \psi::=X \varphi|\varphi U \varphi| \varphi U^{\leq k} \varphi
\end{aligned}
$$

path formula
where

- $b \in[0,1]$ is a probability bound,
- $\bowtie \in\{\leq,<, \geq,>\}$, and
- $k \in \mathbf{N}$ is a bound on the number of steps.

A PCTL formula is always a state formula.
$\alpha U \leq k \beta$ is a bounded until saying that α holds until β within k steps.
For $k=3$ it is equivalent to $\beta \vee(\alpha \wedge X \beta) \vee(\alpha \wedge X(\beta \vee \alpha \wedge X \beta))$.
Some tools also supports $P_{=?} \psi$ asking for the probability that the specified behaviour will occur.

PCTL examples

We can also use derived operators like $G, F, \wedge, \Rightarrow$, etc.

Probabilistic reachability $P_{\geq 1}(F$ done $)$

- probability of reaching the state done is equal to 1

Probabilistic bounded reachability $P_{>0.99}$ ($F^{\leq 6}$ done)

- probability of reaching the state done in at most 6 steps is >0.99

Probabilistic until $P_{<0.96}((\neg$ error $) U($ done $))$

- probability of reaching done with no visit of error is less than 0.96

Qualitative vs. quantitative properties

Qualitative PCTL properties

- $P_{\bowtie b} \psi$ where b is either 0 or 1

Quantitative PCTL properties

- $P_{\bowtie b} \psi$ where b is in $(0,1)$

In DTMC where zero probability edges are erased, it holds that

- $P_{>0}(X \varphi)$ is equivalent to $E X \varphi$
- there is a next state satisfying φ
- $P_{\geq 1}(X \varphi)$ is equivalent to $A X \varphi$
- the next states satisfy φ
- $P_{>0}(F \varphi)$ is equivalent to $E F \varphi$
- there exists a finite path to a state satisfying φ
but
- $P_{\geq 1}(F \varphi)$ is not equivalent to $A F \varphi$

There is no CTL formula equivalent to $P_{\geq 1}(F \varphi)$, and no PCTL formula equivalent to $A F \varphi$.

How the transient probabilities are computed?

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability in the k-th state when starting in 1

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{2}=\left[\begin{array}{lllll}
0 & 0 & 0.05 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0.05 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{4}=\left[\begin{array}{lllll}
0 & 0.05 & 0 & 0 & 0.95
\end{array}\right]
$$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \times P^{5}=\left[\begin{array}{lllll}
0 & 0 & 0.0025 & 0 & 0.9975
\end{array}\right]
$$

How the transient probabilities are computed?

$$
P=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0.05 & 0 & 0.95 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Probability of being in 5 or 2 in the k-th state

$$
P \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
1 & 0.95 & 0 & 1 & 1
\end{array}\right]^{T}
$$

$$
P^{2} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
0.95 & 0.95 & 1 & 0.95 & 1
\end{array}\right]^{T}
$$

$$
P^{3} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
0.95 & 1 & 0.95 & 0.95 & 1
\end{array}\right]^{T}
$$

$$
P^{4} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
1 & 0.9975 & 0.95 & 1 & 1
\end{array}\right]^{T}
$$

$$
P^{5} \times\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{llllll}
0.9975 & 0.9975 & 1 & 0.9975 & 1
\end{array}\right]^{T}
$$

Unbounded reachability - optional slide

Unbounded reachability

Let $p(s, A)$ be the probability of reaching a state in A from s.
It holds that:

- $p(s, A)=1$ for $s \in A$
- $p(s, A)=\sum_{s^{\prime} \in \operatorname{succ}(s)} P\left(s, s^{\prime}\right) * p\left(s^{\prime}, A\right)$ for $s \notin A$ where $\operatorname{succ}(s)$ is a set of successors of s and $P\left(s, s^{\prime}\right)$ is the probability on the edge from s to s^{\prime}.

Theorem

- The minimal non-negative solution of the above equations equals to the probability of unbounded reachability.

Section

Long Run Analysis

Long run analysis

Recall that we reach the state 5 (done) with probability 1 .

What are the states visited infinitely often with probability 1 ?

Definitions

- A state of DMTC is called transient iff there is a positive probability that the system will not return back to this state.
- A state s of DMTC is called recurrent iff, starting from s, the system eventually returns back to the s with probability 1 .

Theorem

- Every transient state is visited finitely many times with probability 1.
- Each recurrent state is with probability 1 either not visited or visited infinitely many times. ${ }^{1}$
${ }^{1}$ This holds only in DTMC models with finitely many states.

Transient vs. recurrent states

Which states are transient? Which states are recurrent?

Theorem ${ }^{1}$

- A state is recurrent if and only if it is in a bottom strongly connected component. All other states are transient.
${ }^{1}$ This holds only in DTMC models with finitely many states.

For the sake of infinite behaviour, we will concentrate on bottom strongly connected components only.

Definition

- A Markov chain is said to be irreducible if every state can be reached from every other state in a finite number of steps.

Theorem

- A Markov chain is irreducible if and only if its graph representation is a single strongly connected component.

Corollary

- All states of a finite irreducible Markov chain are recurrent.

Stationary (Invariant) Distribution

Definition

- Let P be the transition matrix of a DTMC and $\vec{\lambda}$ be a probability distribution on its states. If

$$
\vec{\lambda} P=\vec{\lambda}
$$

then $\vec{\lambda}$ is a stationary (or steady-state or invariant or equilibrium) distribution of the DTMC.

Question:

How many stationary distributions can a Markov chain have?
Can it be more than one?
Can it be none?

Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard's walk

both (1, 0, 0, 0) and ($0,0,0,1$) are stationary distributions.
But, this is not an irreducible Markov chain.

Stationary Distributions

Theorem

- In every finite irreducible DTMC there is a unique invariant distribution.

Q: Can it be none?
Theorem

- For each finite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a finite irreducible Markov chain?

Stationary Distribution \& Cut-sets

Again, we can construct a set of equations that express the result.

Theorem

- Let P be a transition matrix of a finite irreducible DTMC and $\vec{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ be a stationary distribution corresponding to P. For any state i of the DTMC, we have

$$
\sum_{j \neq i} \pi_{j} P_{j, i}=\sum_{j \neq i} \pi_{i} P_{i, j}
$$

Mean Portion of Visited States and Inter Visit Time

Theorem

- Let us have a finite irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that
$\pi_{i}=\lim _{n \rightarrow \infty} E(\#$ of visits of state i during the first n steps $) / n$.
- Let us have a finite irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that

$$
\pi_{i}=1 / m_{i}
$$

where m_{i} is the mean inter visit time of state i.

Aperiodic Markov Chains

For example:

aperiodic

periodic

Definition

- A state s is periodic if there exists an integer $\Delta>1$ such that length of every path from s to s is divisible by Δ.
- A Markov chain is periodic if any state in the chain is periodic.
- A state or chain that is not periodic is aperiodic.

Aperiodic Markov Chains

Theorem

- Let us have a finite aperiodic irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that

$$
\vec{\pi}=\lim _{n \rightarrow \infty} \vec{\lambda} P^{n}
$$

where $\vec{\lambda}$ is an arbitrary distribution on states.

Q: What this is good for?

DTMC Extensions - Communication and Nondeterminism

Last remark on some DTMC extensions.
Modules and synchronisation

- modules
- actions
- rewards

Decision extension

- Markov Decision Processes (MDP)
- Pmin and Pmax properties

