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Probabilistic Classification – Idea

Imagine that
I I look out of a window and see a bird,
I it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is probably a kind of blackbird (kos černý in
Czech).

Here probably means that out of my extensive catalogue of four
kinds of birds that I am able to recognize, "blackbird" gets the
highest degree of belief based on features of this particular bird.

Frequentists might say that the largest proportion of birds with similar features
I have ever seen were blackbirds.

The degree of belief (Bayesians), or the relative frequency
(frequentists) is the probability.
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Basic Discrete Probability Theory

I A finite or countably infinite set Ω of possible outcomes, Ω is
called sample space.
Experiment: Roll one dice once. Sample space: Ω = {1, . . . , 6}

I Each element ω of Ω is assigned a "probability" value f (ω),
here f must satisfy

I f (ω) ∈ [0, 1] for all ω ∈ Ω,
I
∑
ω∈Ω f (ω) = 1.

If the dice is fair, then f (ω) = 1
6 for all ω ∈ {1, . . . , 6}.

I An event is any subset E of Ω.
I The probability of a given event E ⊆ Ω is defined as

P(E ) =
∑
ω∈E

f (ω)

Let E be the event that an odd number is rolled, i.e., E = {1, 3, 5}. Then
P(E) = 1

2 .
I Basic laws: P(Ω) = 1, P(∅) = 0, given disjoint sets A,B we

have P(A ∪ B) = P(A) + P(B), P(Ω r A) = 1− P(A).
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Conditional Probability and Independence

I P(A | B) is the probability of A given B (assume P(B) > 0)
defined by

P(A | B) = P(A ∩ B)/P(B)

(We assume that B is all and only information known.)

A fair dice: what is the probability that 3 is rolled assuming that an odd
number is rolled? ... and assuming that an even number is rolled?

I The law of total probability: Let A be an event and
B1, . . . ,Bn pairwise disjoint events such that Ω =

⋃n
i=1 Bi .

Then

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A | Bi ) · P(Bi )

I A and B are independent if P(A ∩ B) = P(A) · P(B).

It is easy to show that if P(B) > 0, then
A, B are independent iff P(A | B) = P(A).
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Random Variables

I A random variable X is a function X : Ω→ R.
A dice: X : {1, . . . , 6} → {0, 1} such that X (n) = n mod 2.

I A probability mass function (pmf) of X is a function p defined
by

p(x) := P(X = x)

Often P(X ) is used to denote the pmf of X .
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Random Vectors

I A random vector is a function X : Ω→ Rd .
We use X = (X1, . . . ,Xd) where Xi is a random variable
returning the i-th component of X .

I A joint probability mass function of X is
pX (x1, . . . , xd) := P(X1 = x1 ∧ · · · ∧ Xd = xd).
I.e., pX gives the probability of every combination of values.

Often, P(X1, · · · ,Xd) denotes the joint pmf of X1, . . . ,Xd . That is,
P(X1, · · · ,Xd) stands for probabilities P(X1 = x1 ∧ · · · ∧ Xd = xd) for all
possible combinations of x1, . . . , xd .

I The probability mass function pXi
of each Xi is called marginal

probability mass function. We have

pXi
(xi ) = P(Xi = xi ) =

∑
(x1,...,xi−1,xi+1,...,xd )

pX (x1, . . . , xd)
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Random Vectors – Example

Let Ω be a space of colored geometric shapes that are divided into
two categories (positive and negative).

Assume a random vector X = (Xcolor ,Xshape ,Xcat) where
I Xcolor : Ω→ {red , blue},
I Xshape : Ω→ {circle, square},
I Xcat : Ω→ {pos, neg}.

The joint pmf is given by the following tables:

positive:
circle square

red 0.2 0.02

blue 0.02 0.01

negative:
circle square

red 0.05 0.3

blue 0.2 0.2
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Random Vectors – Example

The probability of all possible events can be calculated by summing
the appropriate probabilities.

P(red ∧ circle) = P(Xcolor = red ∧ Xshape = circle)

= P(red ∧ circle ∧ positive)+

+ P(red ∧ circle ∧ negative)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red∧cicle) =
P(positive ∧ red ∧ circle)

P(red ∧ circle)
=

0.2
0.25

= 0.8
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Conditional Probability Mass Functions

We often have to deal with a pmf of a random vector X
conditioned on values of a random vector Y .
I.e., we are interested in P(X = x | Y = y) for all x and y .

We write P(X | Y ) to denote the pmf of X conditioned on Y .
Technically, P(X | Y ) is a function which takes a possible value x
of X and a possible value y of Y and returns P(X = x | Y = y).

This allows us to say, e.g., that two variables X1 and X2 are
independent conditioned on Y by

P(X1,X2 | Y ) = P(X1 | Y ) · P(X2 | Y )

Technically this means that for all possible values x1 of X1, all
possible values x2 of X2, and all possible values y of Y we have

P(X1 = x1 ∧ X2 = x2 | Y = y) =

P(X1 = x1 | Y = y) · P(X2 = x2 | Y = y)
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Bayesian Classification

Let Ω be a sample space (a universum) of all objects that can be
classified.
We assume a probability P on Ω.
A training set will be a subset of Ω randomly sampled according to P.

I Let Y be the random variable for the category which takes
values in {y1, . . . , ym}.

I Let X be the random vector describing n features of a given
instance, i.e., X = (X1, . . . ,Xn)

I Denote by xk possible values of X ,
I and by xij possible values of Xi .

Bayes classifier: Given a vector of feature values xk ,

CBayes(xk) := argmax
i∈{1,...,m}

P(Y = yi | X = xk)

Intuitively, CBayes assigns xk to the most probable category it might
be in.
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Bayesian Classification – Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots
based on their weight and diameter.

That is,
I Y = {apple, apricot},
I X = (Xweight ,Xdiam).

Assume that we are given a fruit that weighs 40g with 5cm
diameter.

The Bayes classifier compares P(Y = apple | X = (40g , 5cm))
with P(Y = apricot | X = (40g , 5cm)) and selects the more
probable category given the features.
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Optimality of the Bayes Classifier

Let C be an arbitrary classifier, that is a function that to every xk
assigns a class out of {y1, . . . , ym}.

Slightly abusing notation, we use C to also denote the random
variable which assigns a category to every instance.
(Technically this is a composition C ◦ X of C and X which first determines
the features using X and then classifies according to C).

Define the error of the classifier C by

EC = P(Y 6= C )

Věta
The Bayes classifier CBayes minimizes EC , that is

ECBayes := min
C is a classifier

EC
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Optimality of the Bayes Classifier

EC =
m∑
i=1

P(Y = yi ∧ C 6= yi )

= 1−
m∑
i=1

P(Y = yi ∧ C = yi )

= 1−
m∑
i=1

∑
xk

P(Y = yi ∧ C = yi | X = xk)P(X = xk)

= 1−
∑
xk

P(X = xk)
m∑
i=1

P(Y = yi ∧ C = yi | X = xk)

= 1−
∑
xk

P(X = xk)P(Y = C (xk) | X = xk)

(Here the last equality follows from the fact that C is determined by xk .)
Choosing

C (xk) = CBayes(xk) = argmax
i∈{1,...,m}

P(Y = yi | X = xk)

maximizes P(Y = C (xk) | X = xk) and thus minimizes EC .
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Practical Use of Bayes Classifier

The crucial problem: How to compute P(Y = yi | X = xk) ?

Given no other assumptions, this requires a table giving
the probability of each category for each possible vector of feature
values, which is impossible to accurately estimate from
a reasonably-sized training set.

Concretely, if all Y ,X1, . . . ,Xn are binary, we need 2n numbers to
specify P(Y = 0 | X = xk) for each possible xk .
(Note that we do not need to specify
P(Y = 1 | X = xk) = 1− P(Y = 0 | X = xk)).

It is a bit better than 2n+1 − 1 entries for specification of the
complete joint pmf P(Y ,X1, . . . ,Xn).

However, it is still too large for most classification problems.
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Let’s Look at It the Other Way Round

Věta (Bayes,1764)

P(A | B) =
P(B | A) · P(A)

P(B)

Důkaz.

P(A | B) =
P(A ∩ B)

P(B)
=

P(A∩B)
P(A) · P(A)

P(B)
=

P(B | A) · P(A)

P(B)
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Bayesian Classification

Determine the category for xk by finding yi maximizing

P(Y = yi | X = xk) =
P(Y = yi ) · P(X = xk | Y = yi )

P(X = xk)

So in order to make the classifier we need to compute:
I The prior P(Y = yi ) for every yi
I The conditionals P(X = xk | Y = yi ) for every xk and yi
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Estimating the Prior and Conditionals

I P(Y = yi ) can be easily estimated from data:
I Given a set of p training examples where
I ni of the examples are in the category yi ,
I we set

P(Y = yi ) =
ni
p

I If the dimension of features is small, P(X = xk | Y = yi ) can
be estimated from data similarly as for P(Y = yi ).

Unfortunately, for higher dimensional data too many examples
are needed to estimate all P(X = xk | Y = yi ) (there are too
many xk ’s).
So where is the advantage of using the Bayes thm.?

We introduce independence assumptions about the features!
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Generative Probabilistic Models

I Assume a simple (usually unrealistic) probabilistic method by
which the data was generated.

I For classification, assume that each category yi has a different
parametrized generative model for P(X = xk | Y = yi ).

I Maximum Likelihood Estiomation (MLE): Set parameters to
maximize the probability that the model produced the given
training data.

I More conceretely: If Mλ denotes a model with parameter
values λ, and Dk is the training data for the k-th category, find
model parameters for category k (λk) that maximizes the
likelihood of Dk :

λk = argmax
λ

P(Dk | Mλ)
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Generative Probabilistic Models – Simple Example

First, let us illustrate the generative model on a simple example.

Consider two binary features:
I Xcolor : Ω→ {red , blue}
I Xshape : Ω→ {circle, square}

and two classes {pos, neg}.

There are 23 = 8 possible combinations of features and classes.

We assume that for each category, the features are distributed
independently:

P(Xcolor ,Xshape | pos) = P(Xcolor | pos) · P(Xshape | pos)

P(Xcolor ,Xshape | neg) = P(Xcolor | neg) · P(Xshape | neg)

So we have to estimate four numbers (parameters):

P(red | pos),P(circle | pos),P(red | neg),P(circle | neg)

(As opposed to six when we want to completely specify the joint conditional
pmfs.)
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Generative Probabilistic Models – Simple Example

Given p training examples, assume that p+ of them are positive, p−
of them are negative and that

I in `+
red positive examples the color is red ,

I in `+
circle positive examples the shape is circle,

I in `−red negative examples the color is red ,
I in `−circle negative examples the shape is circle.

Then MLE estimate P̄ of P is

P̄(red | pos) =
`+
red

p+
P̄(circle | pos) =

`+
circle

p+

P̄(red | neg) =
`−red
p−

P̄(circle | neg) =
`−circle
p−

Now e.g. P̄(red ∧ circle | neg) =
`−red
p−
· `

−
circle
p−

.

Note that if in reality the features are dependent, then the joint
pmf cannot be obtained by such an estimate!
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Naive Bayes

I We assume that features of an instance are (conditionally)
independent given the category:

P(X | Y ) = P(X1, · · · ,Xn | Y ) =
n∏

i=1

P(Xi | Y )

I Therefore, we only need to specify P(Xi | Y ), that is
P(Xi = xij | Y = yk) for each possible pair of a feature-value
xij and a class yk .

Note that if Y and all Xi are binary (values in {0, 1}), this
requires specifying only 2n parameters:

P(Xi = 1 | Y = 1) and P(Xi = 1 | Y = 0) for each Xi

since P(Xi = 0 | Y ) = 1− P(Xi = 1 | Y ).

Compared to specifying 2n parameters without any independence assumptions.
21



Naive Bayes – Example

positive negative

P(Y) 0.5 0.5

P(small | Y ) 0.4 0.4

P(medium | Y ) 0.1 0.2

P(large | Y ) 0.5 0.4

P(red | Y ) 0.9 0.3

P(blue | Y ) 0.05 0.3

P(green | Y ) 0.05 0.4

P(square | Y ) 0.05 0.4

P(triangle | Y ) 0.05 0.3

P(circle | Y ) 0.9 0.3

Is (medium, red , circle) positive?

22



positive negative

P(Y) 0.5 0.5

P(medium | Y ) 0.1 0.2

P(red | Y ) 0.9 0.3

P(circle | Y ) 0.9 0.3

Denote xk = (medium, red , circle).

P(pos | X = xk) =

= P(pos) · P(medium | pos) · P(red | pos) · P(circle | pos) /P(X = xk)

= 0.5 · 0.1 · 0.9 · 0.9 /P(X = xk) = 0.0405/P(X = xk)

P(neg | X = xk) =

= P(neg) · P(medium | neg) · P(red | neg) · P(circle | neg) /P(X = xk)

= 0.5 · 0.2 · 0.3 · 0.3 /P(X = xk) = 0.009/P(X = xk)

Apparently,

P(pos | X = xk) = 0.0405/P(X = xk) > 0.009/P(X = xk) = P(neg | X = xk)

So we classify xk as positive.
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Estimating Probabilities (In General)

I Normally, probabilities are estimated on observed frequencies
in the training data (see the previous example).

I Let us have
I nk training examples in class yk ,
I nijk of these nk examples have the value for Xi equal to xij .

Then we put P̄(Xi = xij | Y = yk) =
nijk
nk

.
I A problem: If, by chance, a rare value xij of a feature Xi

never occurs in the training data, we get

P̄(Xi = xij | Y = yk) = 0 for all k ∈ {1, . . . ,m}

But then P̄(X = xk) = 0 for xk containing the value xij for Xi ,
and thus P̄(Y = yk | X = xk) is not well defined.
Moreover, P̄(Y = yk) · P̄(X = xk | Y = yk) = 0 (for all yk) so
even this cannot be used for classification.
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Probability Estimation Example

Training data:
Size Color Shape Class
small red circle pos
large red circle pos
small red triangle neg
large blue circle neg

Learned probabilities:
positive negative

P̄(Y ) 0.5 0.5

P̄(small | Y ) 0.5 0.5
P̄(medium | Y ) 0 0
P̄(large | Y ) 0.5 0.5

P̄(red | Y ) 1 0.5
P̄(blue | Y ) 0 0.5
P̄(green | Y ) 0 0

P̄(square | Y ) 0 0
P̄(triangle | Y ) 0 0.5
P̄(circle | Y ) 1 0.5

Note that P̄(medium ∧ red ∧ circle) = 0.

So what is P̄(pos | medium ∧ red ∧ circle) ?
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Smoothing

I To account for estimation from small samples, probability
estimates are adjusted or smoothed.

I Laplace smoothing using an m-estimate works as if
I each feature is given a prior probability p,
I such feature have been observed with this probability p in

a sample of size m (recall that m is the number of classes).

We get

P̄(Xi = xij | Y = yk) =
nijk + mp

nk + m

(Recall that nk is the number of training examples of class yk ,
and nijk is the number of training examples of class yk for
which the i-th feature Xi has the value xij .)
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Laplace Smothing Example

I Assume training set contains 10 positive examples:
I 4 small
I 0 medium
I 6 large

I Estimate parameters as follows (m = 2 and p = 1/3)
I P̄(small | positive) = (4 + 2/3)/(10 + 2) = 0.389
I P̄(medium | positive) = (0 + 2/3)/(10 + 2) = 0.056
I P̄(large | positive) = (6 + 2/3)/(10 + 2) = 0.556

(We get
P̄(small ∨medium ∨ large | positive) = 0.394 + 0.03 + 0.576 = 1.)
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Continuous Features

Ω may be (potentially) continuous, Xi may assign a continuum of
values in R.

I The probabilities are computed using probability density
p : R→ R+ instead of pmf.
A random variable X : Ω→ R+ has a density p : R→ R+ if for every
interval [a, b] we have

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

Usually, P(Xi | Y = yk) is used to denote the density of Xi

conditioned on Y = yk .
I The densities P(Xi | Y = yk) are usually estimated using

Gaussian densities as follows:
I Estimate the mean µik and the standard deviation σik based

on training data.
I Then put

P̄(Xi | Y = yk) =
1

σik
√
2π

exp
(
−(Xi − µik)2

2σ2
ik

)
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Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show it to be quite competitive with other
classification methods.
Even if the probabilities are not accurately estimeted, it often picks the
correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Consistency with the training data is not guaranteed.
I Typically handles noise well.
I Missing values are easy to deal with (simply average over all

missing values in feature vectors).
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Bayes Classifier vs MAP vs MLE

Recall that the Bayes classifier chooses the category as follows:

CBayes(xk) = argmax
i∈{1,...,m}

P(Y = yi | X = xk)

= argmax
i∈{1,...,m}

P(Y = yi ) · P(X = xk | Y = yi )

P(X = xk)

As the denominator P(X = xk) is not influenced by i , the Bayes is
equivalent to the Maximum Aposteriori Probability rule:

CMAP(xk) = argmax
i∈{1,...,m}

P(Y = yi ) · P(X = xk | Y = yi )

If we do not care about the prior (or assume uniform) we may use
the Maximum Likelihood Estimate rule:

CMLE (xk) = argmax
i∈{1,...,m}

P(X = xk | Y = yi )

(Intuitively, we maximize the probability that the data xk have been generated
into the category yi .)
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Bayesian Networks (Basic Information)

In the Naive Bayes we have assumed that all features X1, . . . ,Xn

are independent.

This is usually not realistic.
E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

What if we return some dependencies back?
(But now in a well-defined sense.)

Bayesian networks are a graphical model that uses a directed
acyclic graph to specify dependencies among variables.

31



Bayesian Networks – Example

Now, e.g.,
P(C ,S ,W ,B,A) = P(C) · P(S) · P(W | C) · P(B | C , S) · P(A | B)

Now we may e.g. infer what is the probability P(C = T | A = T ) that we sit in
a bad chair assuming that our back aches.
We have to store only 10 numbers as opposed to 25 − 1 if the whole joint
pmf is stored. 32



Bayesian Networks – Learning & Naive Bayes

Many algorithms have been developed for learning:
I the structure of the graph of the network,
I the conditional probability tables.

The methods are based on maximum-likelihood estimation,
gradient descent, etc.

Automatic procedures are usually combined with expert knowledge.

Can you express the naive Bayes for Y ,X1, . . . ,Xn using a Bayesian
network?
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