Credit assignment problem

Imagine playing a game such as chess:

» Players make their moves with only partial knowledge of their
consequences.

» Target value is assigned only when the game is finished.

Imagine a cleaning robot moving in a space that needs to
» systematically clean the space,
» occasionally recharge batteries.

Issues:
» How does the robot evaluate quality of its moves?

» How does it decide where to go?

Reinforcement learning: learn gradually from experience

Reinforcement learning — overview

» Supervised learning: Immediate feedback
» Unsupervised learning: No feedback

» Reinforcement learning: Delayed feedback

Agent

The model:

» Agents that sense & act S,.//u \.
upon their environment I

Environment |

Applications:

Cleaning robots
Investments strategies
Game playing
Scheduling
Verification

vV V. VvV vV VY

A concrete example

Robot grid world
» 6 states, arrows are possible actions

» Robot gets a reward for performing

2] 100)
actions = ™ ‘{)
Ao Ao A
> ... so eventually gets a sequence of oY ety [l
S N
rewards ri, ro, ... - v

.. maximizes the discounted reward
n+yn+y’rn+--
here 0 < v < 1 is a discount factor

The goal is to find an optimal policy which chooses an appropriate
action in each state.

Deterministic Markov decision processes

A deterministic Markov decision process (DMDP) consists of
> a set of states S
> a set of actions A
> a transition function § : S x A — S
» a reward function r : S x A - R

Semantics: Assuming that the current state is s € S, the agent
chooses an action a, receives the reward r(s, a), and then moves on
to the state (s, a).

A policy is a function 7 : S — A which prescribes how to choose
actions in states.

Following a given policy 7 starting in a state s, the agent collects a
.S m,s m,s
sequence of rewards r™* =", r;”, ...

Here r is the reward collected in the i-th step.

Deterministic Markov decision processes

How to specify the overall quality of a policy?

Given a policy 7 and a state s, denote by V7(s)

the discounted reward r{** + ~yry** + y2ry 4 - --
Here 0 < v < 1 is a discount factor that specifies how the agent
"sees" the future.

Our goal: Find 7 which belongs to argmax_, V7 (s) for all s € S.

For the rest we fix a discount factor 0 < v < 1.

Example

Consider the policies:

» m1: always go down and right

» To: whiteboard ...

Let s be the left-most down-most state.
What is V™ (s) 7
What is V™(s) 7

In both cases consider v = 0.5.

100

B]

The Value
Define the optimal policy ©* by

" € argmax V7 (s) forall s € S

s

We use V*(s) to denote V™ (s).

Compute V*(s) for all six states if the discount factor v = 0.9.

N TG 90 :: 100 —’o(a
f Al A A

Iy Iy I
—- —t-
81 G 90 J~ 100

—t— ——

-

One optimal policy V*(s) values

Maximizing the value

The value V* can be expressed using the following recurrent
equations:

V*(s) = maxr™®
s

:mT?x(rf’s%—vrz +925°)
:maxmax(+fyr2 —i—'yzr;rs...)
™ i

= max max (r(s, a) + vrwl"s(s’a)>

a 7'r/
’
= max (r(s7 a) +ymaxr® ,5(s,a)>
a s

= m;x (r(s,a) +vV*((s,a)))

Value iteration algorithm:
> Initialize V{j(s) = 0 for every s.
» Compute V;'\(s) from V;* by

Vite = max(r(s, a) + Vi (9(s, 2)))

Generalization: Markov Decision Processes

Often the transitions function § as well as rewards r are not
deterministic.

If we can estimate the probability of outcomes, we may use

d: S x A— D(S) where D(S) is the set of all probability
distributions on S.

For example: 0(s,a)(s’) = 1/2 and §(s, a)(s”) = 1/2 means that if the
agent chooses a in s, then it proceeds randomly either to s’ or to s”.

Similarly, r : S x A — D(R) where R is a "reasonable" subset of R.

Now the sequence of rewards is not determined by a policy, only a
distribution on sequences of rewards.

The goal is to maximize the expected discounted reward.
The previous recursive equations can be generalized to MDPs.

Q-learning

The recursive equations can be used to compute optimal policies if
0 and r are known to the agent. But what if they are not?
Assume that the agent only observes:

» The current state

» The current reward

» The set of available actions

The idea: Try to learn an approximation of the function

Q(s, 3) = r(s,2) + 1V*(5(s,)

Apparently, when we have Q(s,a) = r(s,a) + yV*(d(s, a)), then
V*(s) = maxy Q(s, a’) and thus we have V*(s).

But how to approximate Q(s, a) when the agent observes only
a local state and reward?

10

Q-learning algorithm

Denote by Q the successive approximations of Q.
> Initialize Q(s,a) =0
(i.e. whenever a new state-action pair is encountered, the algorithm
assumes that Q(s,a) = 0)
» Observe the current state s
» Do forever:

Select an action a and execute it
Receive an immediate reward r
Observe the new state s’

Update the value of @(s7 a) by

vV vYyyVvyy

Q(s,a) =r+~ max Q(s',a)

> Ss=5

Under some technical conditions, Q converges to Q.

11

Q-learning example

R P 'O
-
|81
\J

initial state: 5,

Q(s1, aright) = r +7 max Q(s2,)
a

—

”ri;:hr

Als
Y
.

'-7=

next state: §,

=0+ 0.9max{63, 81,100}

=90

12

Exploration vs exploitation

In the Q-learning algorithm, we have not specified how to choose
an action in each iteration.
Possible approaches:

1. maximize Q(s, a)

2. give each action equal opportunity

3. choose randomly with a probability ko(s’a)/za, kQ(=:2) \where
k>1

ad 1. exploits the values computes so far and thus improves the
policy currently expressed by @

ad 2. explores the space while ignoring @

ad 3. combines exploration & exploitation: if
Q(s,a) >> maxy ., Q(s,a’), the action a is chosen most of
the time but not always

13

Representation of Q

The @ can be represented by various means
» neural networks — Deep Q-learning
» decision trees
» SVM ...

14

