
Credit assignment problem

Imagine playing a game such as chess:
I Players make their moves with only partial knowledge of their

consequences.
I Target value is assigned only when the game is finished.

Imagine a cleaning robot moving in a space that needs to
I systematically clean the space,
I occasionally recharge batteries.

Issues:
I How does the robot evaluate quality of its moves?
I How does it decide where to go?

Reinforcement learning: learn gradually from experience

1



Reinforcement learning – overview

I Supervised learning: Immediate feedback
I Unsupervised learning: No feedback

I Reinforcement learning: Delayed feedback

The model:
I Agents that sense & act

upon their environment

Applications:
I Cleaning robots
I Investments strategies
I Game playing
I Scheduling
I Verification
I ...

2



A concrete example

Robot grid world
I 6 states, arrows are possible actions
I Robot gets a reward for performing

actions
I ... so eventually gets a sequence of

rewards r1, r2, . . .
... maximizes the discounted reward
r1 + γr2 + γ2r3 + · · ·
here 0 < γ < 1 is a discount factor

The goal is to find an optimal policy which chooses an appropriate
action in each state.

3



Deterministic Markov decision processes

A deterministic Markov decision process (DMDP) consists of
I a set of states S
I a set of actions A
I a transition function δ : S × A→ S

I a reward function r : S × A→ R
Semantics: Assuming that the current state is s ∈ S , the agent
chooses an action a, receives the reward r(s, a), and then moves on
to the state δ(s, a).

A policy is a function π : S → A which prescribes how to choose
actions in states.

Following a given policy π starting in a state s, the agent collects a
sequence of rewards rπ,s = rπ,s1 , rπ,s2 , . . ..
Here rπi is the reward collected in the i-th step.

4



Deterministic Markov decision processes

How to specify the overall quality of a policy?

Given a policy π and a state s, denote by V π(s)

the discounted reward rπ,s1 + γrπ,s2 + γ2rπ,s3 + · · ·

Here 0 < γ < 1 is a discount factor that specifies how the agent
"sees" the future.

Our goal: Find π which belongs to argmaxπ′ V π′(s) for all s ∈ S .

For the rest we fix a discount factor 0 < γ < 1.

5



Example

Consider the policies:
I π1: always go down and right
I π2: whiteboard ...

Let s be the left-most down-most state.

What is V π1(s) ?

What is V π2(s) ?

In both cases consider γ = 0.5.

6



The Value

Define the optimal policy π∗ by

π∗ ∈ argmax
π

V π(s) for all s ∈ S

We use V ∗(s) to denote V π∗(s).

Compute V ∗(s) for all six states if the discount factor γ = 0.9.

7



Maximizing the value
The value V ∗ can be expressed using the following recurrent
equations:

V ∗(s) = max
π

rπ,s

= max
π

(
rπ,s1 + γrπ,s2 + γ2rπ,s3 . . .

)
= max

π
max
π′

(
rπ,s1 + γrπ

′,s
2 + γ2rπ

′,s
3 . . .

)
= max

a
max
π′

(
r(s, a) + γrπ

′,δ(s,a)
)

= max
a

(
r(s, a) + γmax

π′
rπ
′,δ(s,a)

)
= max

a
(r(s, a) + γV ∗(δ(s, a)))

Value iteration algorithm:
I Initialize V ∗0 (s) = 0 for every s.
I Compute V ∗i+1(s) from V ∗i by

V ∗i+1 = max
a

(r(s, a) + γV ∗i (δ(s, a)))
8



Generalization: Markov Decision Processes

Often the transitions function δ as well as rewards r are not
deterministic.

If we can estimate the probability of outcomes, we may use
δ : S × A→ D(S) where D(S) is the set of all probability
distributions on S .
For example: δ(s, a)(s ′) = 1/2 and δ(s, a)(s ′′) = 1/2 means that if the
agent chooses a in s, then it proceeds randomly either to s ′ or to s ′′.

Similarly, r : S ×A→ D(R) where R is a "reasonable" subset of R.

Now the sequence of rewards is not determined by a policy, only a
distribution on sequences of rewards.
The goal is to maximize the expected discounted reward.
The previous recursive equations can be generalized to MDPs.

9



Q-learning

The recursive equations can be used to compute optimal policies if
δ and r are known to the agent. But what if they are not?

Assume that the agent only observes:
I The current state
I The current reward
I The set of available actions

The idea: Try to learn an approximation of the function
Q(s, a) = r(s, a) + γV ∗(δ(s, a))

Apparently, when we have Q(s, a) = r(s, a) + γV ∗(δ(s, a)), then
V ∗(s) = maxa′ Q(s, a′) and thus we have V ∗(s).

But how to approximate Q(s, a) when the agent observes only
a local state and reward?

10



Q-learning algorithm

Denote by Q̂ the successive approximations of Q.
I Initialize Q̂(s, a) = 0

(i.e. whenever a new state-action pair is encountered, the algorithm
assumes that Q̂(s, a) = 0)

I Observe the current state s
I Do forever:

I Select an action a and execute it
I Receive an immediate reward r
I Observe the new state s ′

I Update the value of Q̂(s, a) by

Q̂(s, a) = r + γmax
a′

Q̂(s ′, a′)

I s = s ′

Under some technical conditions, Q̂ converges to Q.

11



Q-learning example

Q̂(s1, aright) = r + γmax
a′

Q̂(s2, a
′)

= 0+ 0.9max{63, 81, 100}
= 90

12



Exploration vs exploitation

In the Q-learning algorithm, we have not specified how to choose
an action in each iteration.

Possible approaches:
1. maximize Q̂(s, a)

2. give each action equal opportunity

3. choose randomly with a probability kQ̂(s,a)/
∑

a′ k
Q̂(s,a′) where

k > 1

ad 1. exploits the values computes so far and thus improves the
policy currently expressed by Q̂

ad 2. explores the space while ignoring Q̂

ad 3. combines exploration & exploitation: if
Q̂(s, a) >> maxa′ 6=a Q̂(s, a′), the action a is chosen most of
the time but not always

13



Representation of Q̂

The Q̂ can be represented by various means
I neural networks – Deep Q-learning
I decision trees
I SVM ...

14


