Credit assignment problem

Imagine playing a game such as chess:

- Players make their moves with only partial knowledge of their consequences.
- Target value is assigned only when the game is finished.

Imagine a cleaning robot moving in a space that needs to

- systematically clean the space,
- occasionally recharge batteries.

Issues:

- How does the robot evaluate quality of its moves?
- How does it decide where to go?

Reinforcement learning: learn gradually from experience

Reinforcement learning - overview

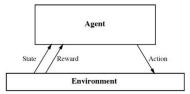
- Supervised learning: Immediate feedback
- Unsupervised learning: No feedback
- Reinforcement learning: Delayed feedback

The model:

 Agents that sense & act upon their environment

Applications:

- Cleaning robots
- Investments strategies
- Game playing
- Scheduling
- Verification

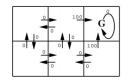


A concrete example

Robot grid world

- 6 states, arrows are possible actions
- Robot gets a reward for performing actions
- ... so eventually gets a sequence of rewards r₁, r₂,... ... maximizes the discounted reward

 $r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots$ here $0 < \gamma < 1$ is a *discount factor*



The goal is to find an optimal *policy* which chooses an appropriate action in each state.

Deterministic Markov decision processes

A deterministic Markov decision process (DMDP) consists of

- a set of states S
- a set of actions A
- a transition function $\delta : S \times A \rightarrow S$
- a reward function $r: S \times A \rightarrow \mathbb{R}$

Semantics: Assuming that the current state is $s \in S$, the agent chooses an action *a*, receives the reward r(s, a), and then moves on to the state $\delta(s, a)$.

A *policy* is a function $\pi: S \to A$ which prescribes how to choose actions in states.

Following a given policy π starting in a state s, the agent collects a sequence of rewards $r^{\pi,s} = r_1^{\pi,s}, r_2^{\pi,s}, \ldots$ Here r_i^{π} is the reward collected in the *i*-th step.

Deterministic Markov decision processes

How to specify the overall quality of a policy?

Given a policy π and a state s, denote by $V^{\pi}(s)$

the discounted reward $r_1^{\pi,s} + \gamma r_2^{\pi,s} + \gamma^2 r_3^{\pi,s} + \cdots$

Here 0 < γ < 1 is a *discount factor* that specifies how the agent "sees" the future.

Our goal: Find π which belongs to $\arg \max_{\pi'} V^{\pi'}(s)$ for all $s \in S$. For the rest we fix a discount factor $0 < \gamma < 1$.

Example

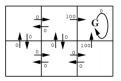
Consider the policies:

- π_1 : always go down and right
- π₂: whiteboard ...

Let s be the left-most down-most state. What is $V^{\pi_1}(s)$?

What is $V^{\pi_2}(s)$?

In both cases consider $\gamma = 0.5$.

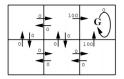


The Value

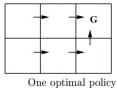
Define the optimal policy π^* by

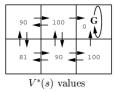
$$\pi^* \in rg\max_{\pi} V^{\pi}(s) ext{ for all } s \in S$$

We use $V^*(s)$ to denote $V^{\pi^*}(s)$.



Compute $V^*(s)$ for all six states if the discount factor $\gamma = 0.9$.





Maximizing the value

The value V^* can be expressed using the following recurrent equations:

$$V^{*}(s) = \max_{\pi} r^{\pi,s}$$

= $\max_{\pi} (r_{1}^{\pi,s} + \gamma r_{2}^{\pi,s} + \gamma^{2} r_{3}^{\pi,s} ...)$
= $\max_{\pi} \max_{\pi'} (r_{1}^{\pi,s} + \gamma r_{2}^{\pi',s} + \gamma^{2} r_{3}^{\pi',s} ...)$
= $\max_{a} \max_{\pi'} (r(s,a) + \gamma r_{2}^{\pi',\delta(s,a)})$
= $\max_{a} (r(s,a) + \gamma \max_{\pi'} r^{\pi',\delta(s,a)})$
= $\max_{a} (r(s,a) + \gamma V^{*}(\delta(s,a)))$

Value iteration algorithm:

• Initialize
$$V_0^*(s) = 0$$
 for every s.

• Compute
$$V_{i+1}^*(s)$$
 from V_i^* by

$$V_{i+1}^* = \max_{a} \left(r(s, a) + \gamma V_i^*(\delta(s, a)) \right)$$

Generalization: Markov Decision Processes

Often the transitions function δ as well as rewards r are not deterministic.

If we can estimate the probability of outcomes, we may use $\delta : S \times A \rightarrow \mathcal{D}(S)$ where $\mathcal{D}(S)$ is the set of all probability distributions on S.

For example: $\delta(s, a)(s') = 1/2$ and $\delta(s, a)(s'') = 1/2$ means that if the agent chooses a in s, then it proceeds randomly either to s' or to s''.

Similarly, $r: S \times A \rightarrow \mathcal{D}(R)$ where R is a "reasonable" subset of \mathbb{R} .

Now the sequence of rewards is not determined by a policy, only a *distribution* on sequences of rewards.

The goal is to maximize the *expected discounted reward*. The previous recursive equations can be generalized to MDPs.

Q-learning

The recursive equations can be used to compute optimal policies if δ and r are known to the agent. But what if they are not?

Assume that the agent only observes:

- The current state
- The current reward
- The set of available actions

The idea: Try to learn an approximation of the function $Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$

Apparently, when we have $Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$, then $V^*(s) = \max_{a'} Q(s, a')$ and thus we have $V^*(s)$.

But how to approximate Q(s, a) when the agent observes only a local state and reward?

Q-learning algorithm

Denote by \hat{Q} the successive approximations of Q.

• Initialize
$$\hat{Q}(s, a) = 0$$

(i.e. whenever a new state-action pair is encountered, the algorithm assumes that $\hat{Q}(s,a)=0)$

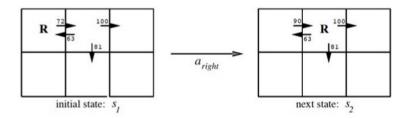
- Observe the current state s
- Do forever:
 - Select an action a and execute it
 - Receive an immediate reward r
 - Observe the new state s'
 - Update the value of $\hat{Q}(s, a)$ by

$$\hat{Q}(s,a) = r + \gamma \max_{a'} \hat{Q}(s',a')$$

► *s* = *s*′

Under some technical conditions, \hat{Q} converges to Q.

Q-learning example



$$\hat{Q}(s_1, a_{right}) = r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

= 0 + 0.9 max{63, 81, 100}
= 90

Exploration vs exploitation

In the Q-learning algorithm, we have not specified how to choose an action in each iteration.

Possible approaches:

- 1. maximize $\hat{Q}(s, a)$
- 2. give each action equal opportunity
- 3. choose randomly with a probability $k^{\hat{Q}(s,a)}/\sum_{a'}k^{\hat{Q}(s,a')}$ where k>1
- ad 1. exploits the values computes so far and thus improves the policy currently expressed by \hat{Q}
- ad 2. explores the space while ignoring \hat{Q}
- ad 3. combines exploration & exploitation: if $\hat{Q}(s, a) >> \max_{a' \neq a} \hat{Q}(s, a')$, the action *a* is chosen most of the time but *not always*

Representation of \hat{Q}

The \hat{Q} can be represented by various means

- neural networks Deep Q-learning
- decision trees
- ► SVM ...