Credit assignment problem

Imagine playing a game such as chess:

- Players make their moves with only partial knowledge of their consequences.
- Target value is assigned only when the game is finished.

Imagine a cleaning robot moving in a space that needs to

- systematically clean the space,
- occasionally recharge batteries.

Issues:

- How does the robot evaluate quality of its moves?
- How does it decide where to go?

Reinforcement learning: learn gradually from experience

Reinforcement learning - overview

- Supervised learning: Immediate feedback
- Unsupervised learning: No feedback
- Reinforcement learning: Delayed feedback

The model:

- Agents that sense \& act upon their environment

Applications:

- Cleaning robots
- Investments strategies
- Game playing
- Scheduling
- Verification
- ...

A concrete example

Robot grid world

- 6 states, arrows are possible actions
- Robot gets a reward for performing actions
- ... so eventually gets a sequence of rewards r_{1}, r_{2}, \ldots

... maximizes the discounted reward $r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots$ here $0<\gamma<1$ is a discount factor

The goal is to find an optimal policy which chooses an appropriate action in each state.

Deterministic Markov decision processes

A deterministic Markov decision process (DMDP) consists of

- a set of states S
- a set of actions A
- a transition function $\delta: S \times A \rightarrow S$
- a reward function $r: S \times A \rightarrow \mathbb{R}$

Semantics: Assuming that the current state is $s \in S$, the agent chooses an action a, receives the reward $r(s, a)$, and then moves on to the state $\delta(s, a)$.
A policy is a function $\pi: S \rightarrow A$ which prescribes how to choose actions in states.

Following a given policy π starting in a state s, the agent collects a sequence of rewards $r^{\pi, s}=r_{1}^{\pi, s}, r_{2}^{\pi, s}, \ldots$
Here r_{i}^{π} is the reward collected in the i-th step.

Deterministic Markov decision processes

How to specify the overall quality of a policy?

Given a policy π and a state s, denote by $V^{\pi}(s)$

$$
\text { the discounted reward } r_{1}^{\pi, s}+\gamma r_{2}^{\pi, s}+\gamma^{2} r_{3}^{\pi, s}+\cdots
$$

Here $0<\gamma<1$ is a discount factor that specifies how the agent "sees" the future.

Our goal: Find π which belongs to $\arg \max _{\pi^{\prime}} V^{\pi^{\prime}}(s)$ for all $s \in S$.
For the rest we fix a discount factor $0<\gamma<1$.

Example

Consider the policies:

- π_{1} : always go down and right
- π_{2} : whiteboard ...

Let s be the left-most down-most state.
What is $V^{\pi_{1}}(s)$?
What is $V^{\pi_{2}}(s)$?
In both cases consider $\gamma=0.5$.

The Value

Define the optimal policy π^{*} by

$$
\pi^{*} \in \underset{\pi}{\arg \max } V^{\pi}(s) \text { for all } s \in S
$$

We use $V^{*}(s)$ to denote $V^{\pi^{*}}(s)$.

Compute $V^{*}(s)$ for all six states if the discount factor $\gamma=0.9$.

One optimal policy

Maximizing the value

The value V^{*} can be expressed using the following recurrent equations:

$$
\begin{aligned}
V^{*}(s) & =\max _{\pi} r^{\pi, s} \\
& =\max _{\pi}\left(r_{1}^{\pi, s}+\gamma r_{2}^{\pi, s}+\gamma^{2} r_{3}^{\pi, s} \cdots\right) \\
& =\max _{\pi} \max _{\pi^{\prime}}\left(r_{1}^{\pi, s}+\gamma r_{2}^{\pi^{\prime}, s}+\gamma^{2} r_{3}^{\pi^{\prime}, s} \cdots\right) \\
& =\max _{a} \max _{\pi^{\prime}}\left(r(s, a)+\gamma r^{\pi^{\prime}, \delta(s, a)}\right) \\
& =\max _{a}\left(r(s, a)+\gamma \max _{\pi^{\prime}} r^{\pi^{\prime}, \delta(s, a)}\right) \\
& =\max _{a}\left(r(s, a)+\gamma V^{*}(\delta(s, a))\right)
\end{aligned}
$$

Value iteration algorithm:

- Initialize $V_{0}^{*}(s)=0$ for every s.
- Compute $V_{i+1}^{*}(s)$ from V_{i}^{*} by

$$
V_{i+1}^{*}=\max _{a}\left(r(s, a)+\gamma V_{i}^{*}(\delta(s, a))\right)
$$

Generalization: Markov Decision Processes

Often the transitions function δ as well as rewards r are not deterministic.

If we can estimate the probability of outcomes, we may use $\delta: S \times A \rightarrow \mathcal{D}(S)$ where $\mathcal{D}(S)$ is the set of all probability distributions on S.
For example: $\delta(s, a)\left(s^{\prime}\right)=1 / 2$ and $\delta(s, a)\left(s^{\prime \prime}\right)=1 / 2$ means that if the agent chooses a in s, then it proceeds randomly either to s^{\prime} or to $s^{\prime \prime}$.

Similarly, $r: S \times A \rightarrow \mathcal{D}(R)$ where R is a "reasonable" subset of \mathbb{R}.

Now the sequence of rewards is not determined by a policy, only a distribution on sequences of rewards.
The goal is to maximize the expected discounted reward.
The previous recursive equations can be generalized to MDPs.

Q-learning

The recursive equations can be used to compute optimal policies if δ and r are known to the agent. But what if they are not?

Assume that the agent only observes:

- The current state
- The current reward
- The set of available actions

The idea: Try to learn an approximation of the function $Q(s, a)=r(s, a)+\gamma V^{*}(\delta(s, a))$
Apparently, when we have $Q(s, a)=r(s, a)+\gamma V^{*}(\delta(s, a))$, then $V^{*}(s)=\max _{a^{\prime}} Q\left(s, a^{\prime}\right)$ and thus we have $V^{*}(s)$.

But how to approximate $Q(s, a)$ when the agent observes only a local state and reward?

Q-learning algorithm

Denote by \hat{Q} the successive approximations of Q.

- Initialize $\hat{Q}(s, a)=0$
(i.e. whenever a new state-action pair is encountered, the algorithm assumes that $\hat{Q}(s, a)=0$)
- Observe the current state s
- Do forever:
- Select an action a and execute it
- Receive an immediate reward r
- Observe the new state s^{\prime}
- Update the value of $\hat{Q}(s, a)$ by

$$
\hat{Q}(s, a)=r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

- $s=s^{\prime}$

Under some technical conditions, \hat{Q} converges to Q.

Q-learning example

$$
\begin{aligned}
\hat{Q}\left(s_{1}, a_{r i g h t}\right) & =r+\gamma \max _{a^{\prime}} \hat{Q}\left(s_{2}, a^{\prime}\right) \\
& =0+0.9 \max \{63,81,100\} \\
& =90
\end{aligned}
$$

Exploration vs exploitation

In the Q-learning algorithm, we have not specified how to choose an action in each iteration.

Possible approaches:

1. maximize $\hat{Q}(s, a)$
2. give each action equal opportunity
3. choose randomly with a probability $k^{\hat{Q}(s, a)} / \sum_{a^{\prime}} k^{\hat{Q}\left(s, a^{\prime}\right)}$ where $k>1$
ad 1. exploits the values computes so far and thus improves the policy currently expressed by \hat{Q}
ad 2. explores the space while ignoring \hat{Q}
ad 3. combines exploration $\&$ exploitation: if
$\hat{Q}(s, a) \gg \max _{a^{\prime} \neq a} \hat{Q}\left(s, a^{\prime}\right)$, the action a is chosen most of the time but not always

Representation of \hat{Q}

The \hat{Q} can be represented by various means

- neural networks - Deep Q-learning
- decision trees
- SVM ...

