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a b s t r a c t

Early global measures of genome complexity (power spectra, the analysis of fluctuations in DNA walks or
compositional segmentation) uncovered a high degree of complexity in eukaryotic genome sequences.
The main evolutionary mechanisms leading to increases in genome complexity (i.e. gene duplication
and transposon proliferation) can all potentially produce increases in DNA clustering. To quantify such
clustering and provide a genome-wide description of the formed clusters, we developed GenomeCluster,
an algorithm able to detect clusters of whatever genome element identified by chromosome coordinates.
We obtained a detailed description of clusters for ten categories of human genome elements, including
functional (genes, exons, introns), regulatory (CpG islands, TFBSs, enhancers), variant (SNPs) and repeat
(Alus, LINE1) elements, as well as DNase hypersensitivity sites. For each category, we located their clusters
in the human genome, then quantifying cluster length and composition, and estimated the clustering
level as the proportion of clustered genome elements. In average, we found a 27% of elements in clusters,
although a considerable variation occurs among different categories. Genes form the lowest number of
clusters, but these are the longest ones, both in bp and the average number of components, while the
shortest clusters are formed by SNPs. Functional and regulatory elements (genes, CpG islands, TFBSs,
enhancers) show the highest clustering level, as compared to DNase sites, repeats (Alus, LINE1) or SNPs.

Many of the genome elements we analyzed are known to be composed of clusters of low-level entities. In
addition, we found here that the clusters generated by GenomeCluster can be in turn clustered into high-
level super-clusters. The observation of ‘clusters-within-clusters’ parallels the ‘domains within domains’
phenomenon previously detected through global statistical methods in eukaryotic sequences, and reveals
a complex human genome landscape dominated by hierarchical clustering.

© 2014 Elsevier Ltd. All rights reserved.
. Introduction

The increase in genome complexity from prokaryotes to eukary-
tes has been mainly driven by a gradual growth in the number of
enes, as well as a more sudden growth in the number of introns
nd transposable genetic elements (Lynch and Conery, 2003). Inter-
stingly, the involved evolutionary mechanisms, such as gene
uplication or the increment in the rate of transposon prolifera-
ion, can all potentially produce DNA clustering. Gene duplication

Ohno, 1970; Sankoff, 2001) produces at first gene copies clustered
n tandem, while at least some mobile elements might initially
nsert nearly at random but can be later differentially eliminated

∗ Corresponding author at: Dpto. de Genética, Facultad de Ciencias, Universidad
e Granada, 18071-Granada, Spain.

E-mail address: oliver@ugr.es (J.L. Oliver).
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476-9271/© 2014 Elsevier Ltd. All rights reserved.
from some genome regions and accumulated in others (Hackenberg
et al., 2005; Jurka et al., 2004). Therefore, a quantitative description
of the formed clusters, as well as an estimation of the clustering
level shown by distinct categories of genome elements, can incre-
ment our understanding of the evolution of genome complexity at
the sequence level.

The measurement of genome complexity at the sequence level
began as soon as genome sequences of sufficient length were
available. Three independent groups (Li and Kaneko, 1992a; Peng
et al., 1992; Voss, 1992) applied global statistical methods (i.e.
power spectra, analysis of fluctuations in DNA walks) to uncover
large-scale genome structure. The emerging view was a com-
plex, patchy genome with long-range, power-law correlations, thus

implying that compositional domains should appear at all scales
(Bernaola-Galván et al., 1996; Carpena et al., 2007; Li and Kaneko,
1992a,b; Li et al., 1994). Noteworthy, segmenting these complex,
long-range correlated sequences leads to the observation of the
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(default) option is taking the genome (or chromosome) intersection
point as the distance threshold.

When the data pertain to just one chromosome, the chro-
mosome intersection is defined by the intersection between the

Fig. 1. Top: observed and expected distance distributions for the SNPs of hg19. Note
that short distances are overrepresented and the large ones underrepresented as
2 F. Dios et al. / Computational Bio

domains-within-domains’ phenomenon in eukaryotic, but not in
rokaryotic species (Bernaola-Galván et al., 1996; Li and Kaneko,
992a; Li et al., 1994; Oliver et al., 2004, 2001; Román-Roldán et al.,
998). This phenomenon beautifully mimics the hierarchical nature
f biological complexity originated from integrating collections
f objects at one level into entities of the next higher hierarchi-
al level: exons clustered within the genes, genes integrated into
hromosomes, prokaryotic cells united in an eukaryotic cell, cells
ombined in multicellular organisms, etc. (Schuster, 1996). At the
equence level, this model works by the integration of nucleotides
nto sequence motifs (Nussinov et al., 1986; Stormo, 2000) or com-
ositional domains (Bernaola-Galván et al., 1996; Oliver et al.,
999), domains forming isochores (Bernardi et al., 1985), isochores
rganized into larger chromosome superstructures (Carpena et al.,
011), and so on.

However, with the exception of DNA repeats (Hackenberg
t al., 2005; Jurka and Kapitonov, 2007; Jurka and Kohany, 2005;
urka et al., 2005, 2004; Price et al., 2004; Sellis et al., 2007;
tankiewicz et al., 2004), the chromosome organization of such
enome complexity remains largely unexplored. We are interested
n characterizing additional, more general based sources of DNA
lustering able to contribute to genome complexity. On the basis
f the CpGcluster algorithm (Hackenberg et al., 2006), we have
eveloped a new program (GenomeCluster) able to detect clusters
f whatever elements in the genome, provided that chromosome
oordinates are available for them. In this way, using the hg19
ssembly of the human genome, we were able to retrieve the clus-
ers not only of repetitive DNA or transposable elements (as Alus or
INE1), but also of functional elements (as genes, exons or introns),
egulatory elements (as CpG islands, TFBSs or enhancers), variation
ites (as SNPs) or DNase hypersensitivity sites. We explore here
he genome-wide clustering of all these elements in the human
enome, thus providing a basis to discuss the relation between DNA
lustering and genome complexity.

. Materials and methods

.1. Datasets

Chromosome coordinates for most of the human genome ele-
ents analyzed here were obtained from the UCSC Table Browser

http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=357122457).
he hg19 assembly for the human genome was used throughout.
he refGene table (Pruitt et al., 2005) was used to retrieve the coor-
inates of genes, exons and introns. Only the longest transcript of
ach gene was considered. The coordinates for TFBSs and DNase
ypersensitivity sites of the ENCODE project (Bernstein et al.,
012) were retrieved from the tables wgEncodeRegTfbsClusteredV3
nd wgEncodeRegDNaseClusteredV2, respectively. Alu and LINE1
oordinates were retrieved from the rmsk table of repeat elements
redicted by RepeatMasker (Jurka et al., 2005). The All snp137
et (Sherry et al., 2001) was used to retrieve SNP coordinates.
pG island coordinates were those predicted by CpGcluster, using
he genome intersection as the distance threshold and a p-value
utoff of 1E-5 (Hackenberg et al., 2011). The enhancer dataset
as derived by selecting ENCODE TFBSs tagged with the Gene
ntology term GO:0003705 (RNA polymerase II distal enhancer

equence-specific DNA binding transcription factor activity) and
arrying the histone signatures characterizing active enhancers
H3K4me1 and H3K27ac) (see Zentner et al., 2011 for details).
.2. The GenomeCluster algorithm

The algorithm has two main steps. First, based on a distance
hreshold, the individual genome elements below this threshold are
nd Chemistry 53 (2014) 71–78

clustered. Second, by means of the negative binomial distribution,
a p-value is associated to each genome cluster. This p-value can
then be used as a cutoff: low-significant clusters (i.e. above a given
p-value) can be filtered out.

2.2.1. The genome intersection point as the distance threshold
The clustering analysis of genome elements presented here

is inspired by the level statistics of quantum-disordered systems
(Carpena et al., 2009). The spatial distribution of distances (d)
between adjacent occurrences of a particular genome element can
be characterized by the spacing distribution P(d). For systems as the
energy levels of quantum disordered systems, the corresponding
P(d) follows the Poisson distribution. However, the random distri-
bution P(d) is Poissonian only for continuous distance distributions,
which is valid for the energy levels, but not for the genome ele-
ments, where the distances are integers. The discrete counterpart
of the Poisson distribution is the geometric distribution, which was
used to compute the theoretical (expected) distance distribution of
genome elements.

As shown previously for CpG dinucleotides, the observed and
expected distance distributions show an intersection point sep-
arating intra-cluster from inter-cluster distances (see Fig. 1 in
Hackenberg et al., 2006). It seems reasonable therefore to use this
point as a distance threshold to identify the elements belonging
to each cluster. In most human chromosomes, the intersection lies
near the median of the observed distance distribution between con-
secutive CpG dinucleotides. Thus, the default option in the original
CpGcluster program was to use the median as the distance threshold
to identify the clusters. However, we later found notable differences
for other chromosomes, concluding that the median is not a good
estimator for the intersection (Hackenberg et al., 2011). Therefore,
in the WordCluster algorithm we added an option to compute the
genome intersection as the point showing the maximum differ-
ence between observed and expected cumulative density functions
(CDFs) of the distances (see Fig. 1 in Hackenberg et al., 2011 and
Fig. 1 (bottom) in the present paper). The GenomeCluster algorithm
inherits this method, and although the script still allows for the
use of the median (or some other percentile), the recommended
compared to the expected distances (geometric distribution). The first cross between
both curves separates both regimes. Bottom: the intersection between both curves
(called the genomic intersection) can be precisely computed (71 bp) as the maxi-
mum difference between the observed and expected cumulative density functions
(CDFs).

http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=357122457
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Fig. 2. Top: observed and expected distance distributions for the Alus of hg19. Bot-
tom: maximum difference between the observed and expected (CDFs) pointing to a
genome intersection of 1140 bp. See the legend of Fig. 1 for further details. The two
F. Dios et al. / Computational Bio

bserved and the expected distance distributions in the chromo-
ome. With genome-wide data, the observed distance distributions
or all the chromosomes are merged together, then calculating the
enome intersection point.

.2.2. Statistical significance of genome clusters
To associate a p-value to each of the genome clusters (i.e. the

robability of such a cluster appearing by chance in a random
equence) we used the negative binomial distribution (also known
s Pascal or Pólya distribution) which can be conveniently tailored
o the requirements of genome clusters (Hackenberg et al., 2011).
n general, this distribution can be applied to experiments with
ichotomous outcomes (either success or failure) and gives the
robability of having a certain number of failures when the num-
er of successes was fixed in advance, taking into account that the
xperiment must always end with a success.

By translating these requirements to a genome context, the
uccesses were equated with the occurrences of the particular
enome element being analyzed, while the failures are equated to
on-genome elements. When the genome intersection is used to
stimate the distance threshold, the success probabilities are not
alculated for each chromosome separately, but a genome wide
uccess probability (probability to find the element in the entire
enome) is calculated.

.2.3. Implementation
As mentioned above, to detect clusters of genome ele-

ents, we used a generalization of the algorithms CpGcluster
Hackenberg et al., 2006) and WordCluster (Hackenberg et al.,
011) to develop GenomeCluster (the corresponding Perl script

s available at http://bioinfo2.ugr.es/GenomeCluster/software/).
nstead of searching the sequence for CpG dinucleotides (as
n CpGcluster) or k-mer occurrences (as in WordCluster), the
enomeCluster algorithm uses directly the chromosome coordi-
ates of a given genome element retrieved from any annotation
able. A requirement is that the table is given in the standard BED
ormat (http://genome.ucsc.edu/FAQ/FAQformat.html#format1).
hen, the linear physical distances between consecutive genome
lements in the chromosome are directly determined from the
oordinates.

The option ‘start’ was used for all the genome elements analyzed
ere. This means that the start of each element is used to measure
he distances (in bp) between consecutive elements in the chro-

osome. Therefore, some inter-element distances may need to be
nterpreted in a slightly different way than usual. For example, gene
istances are not the typical intergenic distances that are measured
rom a gene’s end to the following gene’s start.

The un-sequenced chromosome stretches (i.e. ‘islands of Ns’) are
reviously identified for each chromosome by means of a Python
cript (N.py, also available at our website); the distances between
enome elements including one or more islands of Ns were dis-
arded before computing the distance threshold and the statistical
ignificance for the clusters.

. Results

We first look for the distance distributions between genome ele-
ents. Fig. 1 (top) shows a first example with the observed and

xpected distance distributions for the SNPs of hg19. Note that
hort distances are overrepresented, while large ones are under-
epresented, as compared to the expected distances (geometric

istribution). The first crossing point between both curves (the
enomic intersection, as distances for all the chromosomes are
erged together) separates intra- from inter-cluster distances. It

an be accurately computed (71 bp) as the maximum difference
peaks at 135 and 309 bp probably correspond to the lengths of the Alu monomer
and of the entire element, respectively.

between observed and expected cumulative density functions
(CDFs, Fig. 1 bottom).

As a second example, we plot distance distributions for human
Alu retroelements (Fig. 2). The genome intersection here is larger
(1140 bp); note that it can be easily distinguished from other lower,
spurious intersection points by using the maximum difference
between observed and expected CDFs (Fig. 2 bottom). The peak
at 309 bp surely corresponds to the length of the entire Alu ele-
ments, while that at 135 bp may correspond to the length of the
Alu monomer, as these repeats are often found fragmented in the
genome (Hackenberg et al., 2005; Jurka et al., 2005).

We then used the script GenomeCluster with default parame-
ters (i.e. genome intersection as distance threshold, p-value ≤ 1E−5,
clustering method = ‘start’) to search for clusters of genome ele-
ments in the 24 chromosomes (22 autosomes + X + Y) of the hg19
human genome assembly. We analyzed ten categories of elements
(listed in Table 1), including gene-based annotations (as genes,
exons or introns), regulatory elements (as CpG islands, TFBSs,
enhancers), repeats elements (as Alus or LINE1), variation sites
(SNPs) and DNase hypersensitivity sites.

In total, we analyzed more than 64 million elements and found
that 27% of them are organized into 424,113 genome clusters. How-
ever, a considerable variation occurs between different element
categories (see Table 1). A good indicator of clustering level is the
percentage of clustered elements (displayed between parentheses
in column 4 of Table 1). The highest clustering levels were found
for TFBSs and enhancers. The genes and CpG islands show moder-
ate, and strikingly similar, clustering percentages, while exons and
introns double the clustering of the genes. The lower percentages
of clustered elements were found for repeats (Alus and, above all,
LINE1), DNase sites and SNPs. Genes, DNase sites or Alus form he
clusters with more elements (Table 1, column 6), while the clusters
with a minor number of elements were those for CpG islands or
enhancers.

Cluster counts (Table 1, column 3) show that the highest abso-
lute numbers of clusters are formed by SNPs and TFBSs, although
their cluster lengths (Table 1, column 5) are the shortest ones. Genes
form the lowest number of clusters, but they are the longest ones,
both in bp and average number of components (Table 1, column
6). This seems to suggest a relation between cluster and genome-

element sizes. However, the clustering level does not follow this
rule (e.g. the lowest clustering level was obtained for the SNPs and
the largest one for TFBSs, which are only of moderate size). Another

http://bioinfo2.ugr.es/GenomeCluster/software/
http://genome.ucsc.edu/FAQ/FAQformat.html
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Table 1
Clusters of genome elements pertaining to ten different categories in the human genome (hg19).

Genome entity Number of elements Number of
clusters

Elements forming
clusters (%)

Mean cluster
length (bp) ± SD

Mean number of elements
by cluster ± SD

Genes 19,152 206 4408 (23%) 441,645 ± 294,208 21 ± 13
Exons 198,933 5089 78,425 (39%) 16,035 ± 10,234 15 ± 11
Introns 179,781 5178 73,506 (41%) 14,692 ± 9778 14 ± 10
CpG islands 204,834 5563 44,408 (22%) 3384 ± 3143 8 ± 6
TFBSs 4,380,444 160,519 2,707,380 (62%) 230 ± 158 17 ± 15
Enhancers 318,454 25,944 176,925 (56%) 649 ± 672 7 ± 3
DNase sites 1,281,988 5838 121,274 (9%) 10,214 ± 3914 21 ± 7
Alus 1,175,329 8020 158,121 (13%) 8140 ± 4593 20 ± 10
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LINE1 1,480,420 898
SNPs 55,448,579 206,858

nteresting observation was that several gene clusters in different
hromosomes are over one megabase in length; however, there are
hromosomes (as 13, 18 or Y) where the genes do not form clus-
ers. Noteworthy, these three chromosomes are known to have the
owest numbers of both genes and GC-rich isochores (Pavlicek et al.,
002).

.1. Genome-wide maps of genome clusters

Genome-wide maps of the obtained genome clusters can be
rowsed by means of a track hub – i.e., a public web-accessible
irectory of genomic data that can be viewed and formatted
hrough the UCSC Genome Browser as they were native tracks. Fig. 3
hows an example map obtained with this facility. Once the data
re at the UCSC site, the tables of chromosome coordinates for the
ifferent cluster sets can be downloaded by the user simply switch-

ng to the Table Browser, choosing the group ‘Genome Cluster’ and
etting the appropriate options to format the output.

.2. ‘Circos’ maps

Positional information of genome clusters can be also viewed
s circular maps for each chromosome generated by means
f the software-package Circos (Krzywinski et al., 2009). Fig. 4
hows an example for chromosome 19 and images for the
emaining chromosomes are available at http://bioinfo2.ugr.es/

enomeCluster/circos-maps/. Intra and inter-chromosome hetero-
eneity in the number, length and density of clusters for different
lement categories can be easily compared with the help of these
mages.

ig. 3. Clusters of genome elements pertaining to ten different categories in a region of 93
acility.
3,860 (1%) 5226 ± 2522 15 ± 6
6,020 (4%) 25 ± 84 10 ± 61

4. Discussion

Genes (Ben-Elazar et al., 2013; Durand and Sankoff, 2003;
Firneisz et al., 2003; Kendal, 2004; Lercher et al., 2002; Li et al.,
2005; Neel, 1961; Thomas, 2002; Wright et al., 2007), CpG
dinucleotides (Bird, 1986; Hackenberg et al., 2006), Alu retrotrans-
posons (Hackenberg et al., 2005; Jurka and Kohany, 2005; Jurka
et al., 2004, 2002; Pavlícek et al., 2001; Sellis et al., 2007), TFBSs
(Berman et al., 2002; Boeva et al., 2007; Murakami et al., 2004), 3D
structural motifs in ribosomal RNA (Sargsyan and Lim, 2010), SNPs
(Amos, 2010), somatic mutations in cancer (Nik-Zainal et al., 2012),
and many DNA k-mers (Hackenberg et al., 2012) are all known to
occur in clusters. The analysis we carried out here with the help of
the GenomeCluster algorithm confirms and generalizes these obser-
vations. In addition, we were able to detect the clustering level,
the chromosome coordinates, the length and the composition of
the clusters for a wide variety of functional, regulatory or repeat
elements, as well as for variation sites.

4.1. Clusters of functional elements

Functional and regulatory elements (genes, CpG islands, TFBSs,
enhancers) show a high proportion of clustered elements (40.8%
in average, see Table 1), in agreement with recent enrich-
ment/depletion experiments showing that highly clustered words
(DNA k-mers) are significantly enriched in the functional part of

the genome (Hackenberg et al., 2012). Both exons and introns also
show high clustering levels (39% and 41%, respectively); the mean
numbers of these elements by cluster (15 ± 11 and 14 ± 10 in aver-
ages, respectively) agree with the fact that each intron is flanked

6,982 bp of human chromosome 19. The image was obtained using the UCSC track

http://bioinfo2.ugr.es/GenomeCluster/circos-maps/
http://bioinfo2.ugr.es/GenomeCluster/circos-maps/
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Fig. 4. Clusters of genome elements pertaining to different categories in the human chromosome 19 represented as a series of concentric circles by means of the program
C rs are
o

b
p
t
e
e
(

F
p
b
t

ircos (Krzywinski et al., 2009). Histograms of densities and tiles of genome cluste
utside to inside: TFBSs, enhancers, Alus, CpG islands and genes.

y exons at both sides. The small difference between these two
roportions may be due to single-exon genes. Some of the introns in
he human genome are hundred thousand bp in length (Sakharkar

t al., 2004), and therefore some genes could contain two or more
xon clusters. In fact, we found 813 (or 4.2%) of such genes in hg19
see an example in Fig. 5).

ig. 5. The 183 exons of the gene NEB (chr2: 152,341,853–152,591,001) are grouped by ou
rotein component of the cytoskeletal matrix within the sarcomeres of skeletal muscle. T
e classified into 7 types and other repeated modules. Of the 183 exons in the nebulin g
housand transcript variants predicted for nebulin by the RefSeq Project.
shown for each genome category. Five representative categories are drawn from

Since TFBSs are often located within gene bodies (Wittkopp and
Kalay, 2011), one would expect similar levels of clustering for these
two types of elements. However, Table 1 shows that TFBSs show

a far higher proportion (62%) of clustered elements than genes
(23%). The fact that a plethora of transcription factors binds within
protein-coding regions, in addition to nearby noncoding regions

r algorithm into 8 identifiable clusters. This gene encodes nebulin, a giant modular
he encoded protein contains approximately 30-amino acid long modules that can
ene, at least 43 are alternatively spliced. The figure also shows four of the several
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ig. 6. Hierarchical clustering for CpG dinucleotides in a region of 1625 bp of huma
slands, which in turn are clustered within larger CpG-island clusters. Both CpG isla

Stergachis et al., 2013; Weatheritt and Babu, 2013) may explain
hese results.

.2. Repeat and variant clusters

Given its higher density in GC-rich regions (Lander et al., 2001;
avlícek et al., 2001), Alu retrotransposons are thought to be one
f the most clustered elements in the genome (Hackenberg et al.,
005; Jurka and Kohany, 2005; Jurka et al., 2004, 2002; Pavlícek
t al., 2001; Sellis et al., 2007). However, we found that, in com-
arison with other genome elements (Table 1), Alus show only a
oderate number of clusters. In addition, the percentage of clus-

ered elements is low (only the 13% of Alus are forming clusters),
lthough the mean number of elements by cluster is one of the
igher ones (20 ± 10 in average).

A low clustering level (4%) was found for variation sites (table
ll SNPs137 at UCSC). When common (table Common SNPs137)
nd Not-common (the difference between All and Common tables)
ariants were separately analyzed, 2% and 5% of clustered ele-
ents were found, respectively. Clinically associated SNPs (tables

NPFlagged and ClinVar of the UCSC Table Browser) show far higher
lustering levels (74% and 79%, respectively). However, these data
hould be taken with caution, since sample sizes of flagged SNPs
re much smaller. An additional caution is that clinically associated
NPs co-localize with gene bodies, and therefore the clustering of
enes, exons and introns are probably conditioning the clustering
evels we found for this class of SNPs.

The non-random distribution of SNPs in the human genome has
een explained by mutational non-independence (Amos, 2010),
nd also by the action of natural selection, with purifying selection
liminating SNPs from functional regions and balancing selection
romoting the clustering of SNPs (Varela and Amos, 2010; Zhao
t al., 2003).

.3. Clusters within clusters

It is well known that clusters of low-level entities in fact com-
ose many of the genome elements analyzed here. For example,
pG islands are due to the clustering of CpG dinucleotides, TFBSs
ere obtained by clustering peaks of transcription factor occu-
ancy, DNase sites are clusters of peaks of DNase hypersensitivity,
nd so on. We investigated therefore if the clusters obtained with
enomeCluster could be in turn grouped forming structures of a
igher rank. We found that all the genome elements analyzed in
his work (Table 1) were able to form ‘super-clusters’ when they
ere taken as units to feed again the GenomeCluster script. Further
ork is needed, however, to properly determine the statistical and
iological significance of these higher-order superstructures.
The emerging view was, therefore, a genome land-

cape dominated by hierarchical clustering, thus supporting
revious observations by global statistical methods of
mosome 22 (24,712,761–24,714,385). The dinucleotides are clustered within CpG
d genome clusters for CpG islands are statistically significant (p-value ≤ 0.00001).

‘domains-within-domains’ in eukaryotic genomes (Bernaola-
Galván et al., 1996; Li and Kaneko, 1992a; Li et al., 1994; Oliver
et al., 2004, 2001; Román-Roldán et al., 1998). Examples of hier-
archical clustering are shown in Fig. 5 (the exons form clusters
within a gene coding for a modular protein) and 6 (the dinucleotide
CpG is clustered within CpG islands, which are in turn clustered
within larger clusters of CpG-islands). To date, the ‘domains-
within-domains’ phenomenon has been uniquely observed in the
complex, long-range correlated sequences of eukaryotic genomes,
but not in bacterial genomes (see Fig. 3 in Bernaola-Galván et al.,
1996); thus, it seems to be related only to complex genomes.

4.4. Perspectives

The present approach to describe the organization and evaluate
the role of genome clusters in genome complexity has the limita-
tion that we only searched for clusters of elements belonging to a
same category, i.e. only homoclusters were detected. Most prob-
ably, as envisaged by the circos maps (Fig. 4), the situation in the
genome is more complex, with homoclusters of a same element
type intermixed or co-clustered with homoclusters of other ele-
ment types, a process that would lead to heteroclusters of disparate
genome elements. The next step therefore would be to develop
computational tools able to reliably detect such heteroclusters, and
investigate how these are organized, leading to the hugely com-
plex genome structure anticipated by global statistical measures of
genome complexity (Fig. 6).

Another, more general, limitation of our study is that it only con-
sider genome clustering along the one-dimensional chromosome
sequence, thus ignoring the spatial clustering that may result from
the 3D organization of the chromosomes within the nucleus, which
can put together genome elements actually far in the chromosome
or even located on different chromosomes (Trieu and Cheng, 2014).
The 3D vicinity of genetic elements is surely most relevant to gene
function (Pennisi, 2011), but unfortunately the sequence data we
used here do not allow to address this interesting problem. The
chromosomal contact data generated by Hi-C chromosome confor-
mation capturing techniques (Lieberman-Aiden et al., 2009) should
allow to approach this problem in the near future.

Web supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://bioinfo2.ugr.es/GenomeCluster/.
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