
PA103 - Object-oriented Methods for Design of Information Systems

Introduction to
object-oriented design

© Radek Ošlejšek
Fakulta informatiky MU

oslejsek@fi.muni.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 2Spring 2016

Lecture 1 / Part 1:
Course Organization

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 3Spring 2016

Course Organization

Prerequisites:

 Knowledge of object-oriented programming principles
 e.g. the basic PHP, Java, C++ or C# courses

 Core knowledge of software engineering and UML
 PB007 – Software Engineering I

Follow-Up and Related Courses:
 PV167 – Project in Object-oriented Design of Information Systems, spring

 PA017 – Software Engineering II, autumn

 PV260 – Software Quality, spring

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 4Spring 2016

About the course

Lectures:

1. Course organization, OO design vs. structured design, OO fundamentals, OO modeling vs. ER modeling.

2. Interface as contract, introduction to components, from classes to components.

3. Object Constraint Language.

4. Code refactoring („refactoring to patterns“).

5. Software re-use, software patterns at various stages of software life cycle (analysis, design, architecture,
coding).

6. Design patterns in detail.

7. Analysis patterns, Java patterns, anti-patterns.

8. Software architectures, architectural patterns.

9. Component systems. Qualitative attributes and their evaluation.

10. Object-oriented methods for software development, application of UML models in RUP.

11. Special methods and architectures: MDD, FDD, SOA, ...

12. Model-Driven Architecture (MDA), employing OCL in MDA.

Evaluation:

 Exam = multichoice test + practical question(s), 90 min.

 Grades: A: 100-90 B: 89-80 C: 79–70 D: 69-60 E: 59-50 F: 49-0

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 5Spring 2016

Lecture 1 / Part 2:
Structured vs. Object-oriented Paradigms

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 6Spring 2016

Why software models?
 Information systems are always composed of data and operations, which are

responsible for data manipulation and presentation to users

 Many relationships => it's infeasible to treat a complex system as a whole

 Modeling = controlling the complexity by the “divide et impera” principle

Source: objekty.vse.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 7Spring 2016

Structured Modelling

Consistency between models

Consistency within models

 Separate functional and data models

 Context diagram, data flow diagram, events, functional requirements, ...

 Entity-relationship diagram, data vocabulary, ...

 Continuous particularization of models

 Consistency checking

 Within models

 Between models

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 8Spring 2016

Structured Modelling (cont.)

 Functional hierarchies and data clustering help to organize functional and
data models.

 Still too complex relationships mainly between functional and data models.

Source: objekty.vse.cz

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 9Spring 2016

OO Modelling

 Division of system into objects handling data as well as operations => function-data
dependencies are internal, hidden inside objects.

 Object-to-object relationships are simplified.

 Hierarchical clustering of objects/classes into packages and components brings even
more “clarification” of the system. On the other hand, components bring much more
complicated communication dependencies then objects/classes.

 Network of objects and their relationships as opposed to layers in structured design

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 10Spring 2016

OO Modelling (cont.)

 More models than in the case of
structured modeling

 Not all models, e.g. UML models, are
always used. Some models are
relevant to only selected phases of
software life cycle and/or selected
parts of the system.

 Continuous particularization of models

 Consistency checking

 Inside models

 Between models

 Class diagram as the main model.
Other models just help to design
correct final class diagram.

 Incremental and iterative development

 complex life cycle management

Consistency checking and particularization of models

Use case diagram
State machine diag.

Interaction diag.

Class and object diag.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 11Spring 2016

Lecture 1 / Part 3:
OO Fundamentals

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 12Spring 2016

Objects

 Object is the smallest unit combining (encapsulating) data and
functions and instantiating classes.

 Classes represent static view (design-time entities), while objects
represent dynamic view (run-time entities)

 Objects store data in field behind the “layer” of functions (operations).

 Concrete data (values of fields) define object state.

 Methods define behavior.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 13Spring 2016

Objects cooperation

Structured program:

 Code of procedures is allocated in memory before the program is executed. Procedures
then read/write data and calls other procedures.

OO program:

 Objects are instantiated and removed
dynamically. Initial object which is
instantiated by OS or interpreter is
responsible for the instantiation of other
objects.

 Nodes of invocation tree are
dynamically allocated and removed.

 Objects cooperate in order to successfully
respond to method invocation.

 Methods/objects can instantiate other
objects.

 Methods typically send messages to
other objects by calling their methods
and waiting for response.

 Data and responsibilities are distributed
among objects.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 14Spring 2016

Abstraction

Proposal of suitable classification scheme is the key task for object-oriented analysis and design

Abstraction = Classification of objects and classes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 15Spring 2016

Abstraction (cont.)

 Proposal of suitable classification scheme is the key task for object-oriented
analysis and design.

 How many classes do you see in the picture?

 Trees, leaves, ...

 Electronic devices vs mobile devices

 Cats vs fast moving objects – how to classify the lion?

 ...

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 16Spring 2016

Inheritance vs association

Engineer

CivilEngineer SoftwareEngineer

B. Every software engineer has engineering skills

A

1..n1..n

B

SoftwareEngineer

Poet

1..n

Engineer Workman

A. Every software engineer is engineer

 Inheritance can be always replaced by association.

 New trend in higher (component) level is dependency injection

 Liskov substitution principle

 Association is more flexible because links are created at run-time.

 Never use inheritance if object's role can vary in time, e.g. one day the SW
engineering is rather poet while another day he/she is rather Workman

 Objects can never change affiliated class (i.e. the type) during their life time!

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 17Spring 2016

Object role

Every object instantiating sub-class must be always usable
in the context of its super-class(es)

Q: Is CarOwner always Person?
Q: Is CarOwner always Car?

Person

CarOwner

Car Person

CarOwner Car
1 n

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 18Spring 2016

Polymorphism

 Concept from the theory of types
 „+“ means the same for real as well as for integer
 „+“ is has different implementation (behavior) for real and integer

 Polymorphism is a product of inheritance and dynamic connection
 Sub-class inherits name of the method
 Biding the method name with its implementation is accomplished at runtime.

ClassA

print () { echo „A“ }

ClassB

print () { echo „B“ }

ClassA object;
object = new ClassB();
object.print();

Q: What is the output of the following code?

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 19Spring 2016

Liskov Substitution Principle

 If S is a subtype of T, then objects of type T in a program may be replaced with
objects of type S without altering any of the desirable properties of that
program.

 Requirements on method signatures

 Usually restricted directly by OO programming language.

 Behavioral conditions of subtypes

 Their satisfaction depends on the designer/programmer

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 20Spring 2016

Liskov Substitution Principle – signatures

 Requirements on method signatures:

 Contravariance of method arguments in the subtype.

 Covariance of return types in the subtype.

 No new exceptions should be thrown by methods of the subtype, except where those
exceptions are themselves subtypes of exceptions thrown by the methods of the
supertype.

AnimalShelter

Animal getAnimalForAdoption()
void putAnimal(Animal animal)

CatShelter

void putAnimal(Object animal)

AnimalShelter

Animal getAnimalForAdoption()
void putAnimal(Animal animal)

CatShelter

Cat getAnimalForAdoption()

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 21Spring 2016

Liskov Substitution Principle

 Behavioral conditions of subtypes:

 … will be discussed in detail during the „interface as contract“ lesson.

 Preconditions cannot be strengthened in a subtype.

 Postconditions cannot be weakened in a subtype.

 Invariants of the supertype must be preserved in a subtype.

 History constraint (the "history rule"). Objects are regarded as being modifiable only
through their methods (encapsulation). Since subtypes may introduce methods that are
not present in the supertype, the introduction of these methods may allow state changes
in the subtype that are not permissible in the supertype. The history constraint prohibits
this.

 Violation example: Square inheriting from Rectangle with height and width setters. If a
Square object is used in a context where a Rectangle is expected, unexpected behavior
may occur because the dimensions of a Square cannot (or rather should not) be modified
independently.

 Note that if Square and Rectangle had only getter methods (i.e., they were immutable
objects), then no violation of LSP could occur.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 22Spring 2016

The Open Closed Principle

 Software entities like classes,
modules and functions should
be open for extension but
closed for modifications.

 Adding new functionality would
involve minimal changes to
existing code.

 Most changes will be handled
as new methods and new
classes.

 Designs following this principle
would result in resilient code
which does not break on
addition of new functionality.

class ResourceAllocator {

 public int allocate(int resourceType) {
 int resourceId;

 switch (resourceType) {
 case TIME_SLOT:
 // do something
 break;
 case SPACE_SLOT:

 // do something else
 break;
 default:
 // do something
 break;
 }
 }

}

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 23Spring 2016

Types of object connections

Object Connection - physical or conceptual link between objects. Denotes the possibility
of (client) object to use services of another (server, supplying) object or to navigate the object.

When the connection is established:
• At design time – „really“ static connection

– Embedded classes, inheritance,

• At compile time – static connection

– Association, aggregation, composition

• At runtime – dynamic connection

– Dependency

– Methods call

ClassA

ClassB attribute

print () {
 ...
 attribute.foo();
 ...
}

ClassB

foo () {
 ...
}

Static connection

Dynamic connection

Runtime call

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 24Spring 2016

Lecture 1 / Part 4:
Software Architectures – Key Concepts

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 25Spring 2016

Multi-layered Architecture (I)

 Based on structured models

 Suitable for client-server applications

 Multi-layered vs multi-tier Architecture: The concepts of layers and tiers are often
used interchangeably. However, one fairly common point of view is that there is indeed
a difference, and that a layer is a logical structuring mechanism for the elements that
make up your software solution, while a tier is a physical structuring mechanism for the
system infrastructure

Application/logic layer

Presentation layer

Data layer

cl
ie

n
t

se
rv

e
r

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 26Spring 2016

Multi-layered Architecture (cont.)

 Typical features:
 Strong dependences in DB
 Communication through DB
 Autonomous clients
 Complex SQL queries

 Realization:
 Forms (HTML, XML, CSS, ...)
 Scripting (PHP, ASP, ...)
 Relational databases

 Common use:
 PHP-based web pages
 Client-server applications

D
a

ta
 m

o
d

e
l

F
u

n
ctio

n
a

l m
o

d
e

l

Relational database
Relational database

Application
script

Application
script

Client
Client

A
p

p
lica

tio
n

la

ye
r

P
re

se
n

ta
tio

n
la

ye
r

D
a

ta
la

ye
r

Client
Client

Client
Client

Application
script

Application
script Application

script

Application
script

Interconnection through data layer:
+ rapid implementation
+ utilization of known development processes
+ proven technologies
- single table is handled by multiple scripts
- complex database scheme
- poor scalability

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 27Spring 2016

Multi-layered Architecture and OO Design

 Naive adoption of multi-layered architecture
to OO design

 Interaction
 Upper layers play the role of clients to their

lower layers
 Lower layers play the role of severs to their

upper layers
 Object should not depend on objects

from upper layers

Persistent objects
Persistent objects

Business objects
Business objects

Presentation objects
Presentation objects

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 28Spring 2016

Multi-layered Architecture and OO Design (cont.)

 Presentation objects
 User input/output

 Business objects
 Forms conceptual structure of the system

 Independent from presentation
 Independent from data store

 Persistent objects
 Forms persistent layer of the system

 Data storage and their accessibility
 Locking
 Integrity checking

Persistent objects
Persistent objects

Business objects
Business objects

Presentation objects
Presentation objects

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

 Q: Where to verify the input data?
1) In the presentation layer, application layer just handles the data by passing them to data layer.

 Data verification is not typical responsibility of presentation objects.
 Duplication of the verification code across many presentation objects.
 Application layer relay on valid data => is dependent on presentation layer

2) In the application layer, presentation layer just reads the input and show results.
 Intensive client-server communication, slow response

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 29Spring 2016

Multi-layered Architecture and Components

 Utilization of component technologies
 Interconnection through the application layer
 Handling complexity of connection via components

 Typical feature:
 Data separation
 Context management in the application layer

 Realization:
 CORBA, DCOM, SOAP/XML

Interconnection through application layer:
+ robustness and scalability
+ maintenance and extensions
+ parallel development
+ easy integration with other systems
- complex application layer
- require modern approaches for development and management
- it's not feasible to utilize advanced features of modern relational databases

Application
component

Application
component

Client
Client

A
p

p
lica

tio
n

la
ye

r
P

re
se

n
ta

tio
n

la
ye

r
D

a
ta

la
ye

r

Client
Client

Client
Client

Application
component

Application
component Application

component

Application
component

Data
Data

Data
Data

Data
Data

Relational database

Application
script

Client

A
pplication

layer
P

resentation
layer

D
ata

layer

Client Client

Application
script

Application
script

Software Architectures

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 30Spring 2016

What is not multi-layered Architecture

ShoppingCart

displayContent () {
 SELECT * FROM ...
}

<<business>>
ShoppingCart

addGoods () { ... }
removeGoods () { ... }
getGoods () { ... }

<<data>>
Goods

getPrice () { ... }
getSize () { ... }

<<GUI>>
ShoppingCartGUI

ShippongCart cart;

displayContent () {
 for i in cart.getGoods() {
 ...
 }
}

Presentation, application and data logic in single class

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 31Spring 2016

ORM: Object-Relational Mapping

 In the real world, the OO software is often combined with relational
databases

 Relational databases present proven, tuned and highly optimized
technology (efficiency, scalability, data integrity, etc.)

 => It's necessary to map object model to entity-relational model

 => Object-Relational Mapping, ORM
 Java Persistence API, Hibernate, …

 Note1: Although object databases exists a long time, they still play a minority role.

 Note2: NoSQL databases represent a new trend in dynamic data storage, e.g. in
facebook and other social sites. They have no fixed relational scheme. Instead, they the
information scheme is based on ontologies (SQRL, OWL, ...). Query languages, e.g.
SparQL, SQWRL enables to query data and also support automatic inference.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 32Spring 2016

ORM: Tables vs. objects (I)

 Relational Technology
 Data are stored in tables

 Rows represent records,
columns represent values of
concrete types

 Tables are connected by
relations

 Primary/foreign keys

 Cardinality of relations

 Relational algebra and SQL for
data retrieval

 OO technology
 Classes contain data as well as

operations

 Associations with cardinality

 Inheritance

 Associations and objects are in
memory => data manipulation is
based on object interaction.

 Ex.: get all students enrolled in
given course – difference
between SQL and object
interaction

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 33Spring 2016

ORM: The Basic Mapping Principles

 Persistence class = entity set (table)

 Object = entity (record, line in the table)

 Primitive class attribute = entity attribute (column in the table)

 Key is selected from primitive attributes or is created a new one

 Association/aggregation/composition defines relation
(interconnection of tables by means of foreign keys)

 M:N associations must be decomposed

 Mapping of class inheritance:
 1:1 mapping

 Combining to super-class

 Splitting to sub-classes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 34Spring 2016

ORM: class diagram vs. ER diagram

Relational scheme

Persistent objects

DB managers
(handle SQL)

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 35Spring 2016

Inheritance mapping: 1:1

 Every class becomes a table

 All tables share the primary key

 Discriminator becomes an attribute

 Queries search in the table of the concrete sub-class and its super-class

 Data of single instance is stored in multiple tables

 Complex data retrieval

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 36Spring 2016

Inher. mapping: combining to super-class

 Attributes of all sub-classes are stored in single table

 Some attributes can by NULL

 4NF violation

 Suitable for class hierarchies with few sub-classes and few attributes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 37Spring 2016

Inheritance mapping: splitting to sub-classes

 Attributes of super-class are duplicated in tables of all (non-abstract)
sub-classes.

 Suitable if:

 Super-class has few attributes

 There exist a lot of sub-classes (spreading class hierarchy)

 Sub-classes have a lot of specific attributes

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 38Spring 2016

Association vs. entity relation (I)

ico

name

Company

id

name

Person

ico

name

Company
id

name

Personjob_id

company_ico

person_id

salary

Job

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 39Spring 2016

Association vs. entity relation (II)

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

ico

name

Company

id

name

Person

Note (often mistake): The Person class has no attribute id in the class model !!!

• Q: Is this model directly implementable?
• A: Yes. As opposed to ER model, M:N relationships pose no problem.
• For example, the Company class can include an array of Persons and vice versa.
 On the other hand, there are many ways to elaborate this initial decomposition.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 40Spring 2016

Association vs. entity relation (III)

 Approach 1, model 1: We prefer one direction

 Company stores persons (employees) in array

 Person has no link to its companies

 Problem: There are many companies registered in the system. Where
they are stored? How we get link to concrete address if we have no
query mechanism?

-name

Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-name

Personemployes

*

**

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 41Spring 2016

Association vs. entity relation (IV)

 Approach 1, model 2: Single JobsMngr stores all the companies and
mediates access to companies and their employees.

 Q: Is the getCompanies() method implementable? How effectively?

-name

Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-companies : Company[]

+getEmployees(c : Company) : Person []
+getCompanies(p : Person) : Company []

JobsMngr

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company
-name

Person*

*

*

employes

*

*

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 42Spring 2016

Association vs. entity relation (V)

 Approach 1, model 2: getCompanies() is less effective /O(n*n)/ than
getEmployess() /O(n)/. The reason is that each invocation of the
company.contains() searches in the list of employees.

-companies : Company[]

+getEmployees(c : Company) : Person []
+getCompanies(p : Person) : Company []

JobsMngr

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-name

Person

*

*

*

*

employes

*

*

return company.getEmployees();

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 43Spring 2016

Association vs. entity relation (VI)

 Approach 2, model 1: Bidirectional association

 Pros: Clear responsibilities. Responsibilities are uniformly distributed
to all classes

 Cons: Very complicated memory management, especially without
automatic “garbage collection“

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-name
-companies : Company[]

+getCompanies() : Company []

Person

-ico
-name
-employees : Person[]

+getEmployees() : Person []

Company

-companies : Company[]
-employees : Person[]

+getCompany(c : Company) : Company
+getEmployee(p : Person) : Person

<<singleton>>
JobsMngr

0..*

0..*

0..*

0..*

employs

0..*

0..*

0..* 0..*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 44Spring 2016

Association vs. entity relation (VII)

 Approach 2, model 2: Preserved bidirectional association,
responsibility located in a big “God” object.

 Pros: (a) Management code located in JobsMngr => maintainability.
 (b) Efficiency.

 Q: Where to store salary?

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-companies : Map<Company, Set<Person>>
-employees : Map<Person, Set<Company>>

+getCompanies(e : Person) : Set<Company>
+getEmployees(c : Company) : Set<Person>

<<singleton>>
JobsMngr

-ico
-name

Company

-name
Person

*

*

*

*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 45Spring 2016

Association vs. entity relation (VIII)

 Approach 3, model 1: Helper class (similar to the association entity in
ERD). This class links concrete couple and stores additional data
related to the couple.

 Q: Putting jobs to list/array is not optimal. Do you know better solution?

-name
Person

-ico
-name

Company 0..*

0..*

employs

0..*

0..*

-jobs : Job[]

+getCompanies(p : Person) : Compan...
+getEmployees(c : Company) : Person []

<<singleton>>
JobsMngr

-salary
-company : Company
-employee : Person

+getCompany() : Company
+getEmployee() : Person
+getSalary() : double

Job

-ico
-name

Company

-name

Person* 1

* 1

1

**

1

1*

1*

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 46Spring 2016

Association vs. entity relation (IX)

 Approach 3, model 2: Maps provide efficient access to the individual sets of
companies and employees as well as to concrete jobs (couples). On the other hand,
this solution is unnecessary complicated in many situations.

=> Designer has to choose the best solution for concrete context=> Designer has to choose the best solution for concrete context

=> Design patterns drive the designer=> Design patterns drive the designer

-salary
-company : Company
-employee : Person

+getCompany() : Company
+getEmployee() : Person
+getSalary() : double

Job
-ico
-name

Company

-name
Person

-companies : Map<Company, Set<Job>>
-employees : Map<Person, Set<Job>>

+getJobs(p : Person) : Set<Job>
+getJobs(c : Company) : Set<Job>
+getCompanies() : Set<Company>
+getEmployees() : Set<Person>

<<singleton>>
JobsMngr

* 1

*

* 1

*

companies

employees

1

1

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 47Spring 2016

Conclusion:

Entity-relational paradigm is definitely not the same as
object-oriented paradigm. Therefore, ER diagrams are
definitely not the same as UML class diagrams, although
they look similar.

PA103: OO Methods for Design of Information Systems © R. Ošlejšek, FI MU 48Spring 2016

Questions?

Three Engineers

There are three engineers in a car going for a drive. The first is a mechanical
engineer, the second an electronics engineer and the third is a software engineer.

Fortunately, the mechanical engineer is driving because the brakes fail as they
are going downhill. The mechanical engineer eventually brings the car safely to a
halt and gets out to examine the hydraulic systems.

The electronics engineer gets out and checks the body computer, ABS system and the
power train CAN bus.

The software engineer stays in the car and when queried about it says that they
should all just get back in the car and see if it happens again!

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48

