
PA103 - Object-oriented Methods for Design of Information Systems

Refactoring and Code Smells

© Radek Ošlejšek
Faculty of Informatics

oslejsek@fi.muni.cz

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 2Spring 2016

Literature

 Refactoring – Improving the
Design of Existing Code

 Authors: M. Fowler, K. Beck,
J. Brant, W. Opdyke, D.
Roberts

 Publisher: Addison-Wesley
Professional

 Copyright: 1999 (Kindle
Edition 2012)

 www.refactoring.com

http://www.refactoring.com/

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 3Spring 2016

Refactoring

 Refactoring (noun):
a change made to the internal structure of software to make it

easier to understand and cheaper to modify
without changing its observable behavior.

 Refactor (verb):
to restructure software by applying a series of refactorings.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 4Spring 2016

Refactoring Principles

Why do we refactor?Why do we refactor?
To improve the design of software
To make software easier to understand
To help you find bugs
To make your program faster

When should we refactor?When should we refactor?
– Refactor when you add functionality
– Refactor when you need to fix a bug
– Refactor as you do code reviews
– Refactoring is very common in iterative/incremental development (integration of a

new code usually require refactoring of existing parts of the system)
– Refactor when the code starts to smellRefactor when the code starts to smell.
– Don't refactor if a “stench” is the feature of applied design pattern!Don't refactor if a “stench” is the feature of applied design pattern!

What about performance?What about performance?
Worry about performance only when you have identified a performance problem

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 5Spring 2016

Refactoring and Development Process

 Traditional software engineering is modeled after traditional engineering
practices (= design first, then code)

 The desired end product can be determined in advance

 Workers of a given type are interchangeable

 Agile software engineering is based on different assumptions:

 Requirements (and therefore design) change as users become acquainted with
the software

 Programmers are professionals with varying skills and knowledge

 Programmers are in the best position for making design decisions

 Refactoring is fundamental to agile programming

 Refactoring is often necessary even in a traditional iterative/incremental
development

 Code modification during the iterative process
 Integration of new increments

 Refactoring environment and tools:

 Continuous integration, Change Management, ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 6Spring 2016

Lecture 4 / Part 1:

Bad Smells In Code
(Examples in Detail)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 7Spring 2016

Bad Smells in Code

If it stinks, change it.
--Grandma Beck, discussing child-rearing philosophyCode Smells:

 Duplicated Code
 Long Method
 Large Class
 Long Parameter List
 Divergent Change
 Shotgun Surgery
 Feature Envy
 Data Clumps
 Primitive Obsession
 Switch Statements
 Parallel Inheritance Hierarchies

 Lazy Class
 Speculative Generality
 Temporary Field
 Message Chains
 Middle Man
 Inappropriate Intimacy
 Alternative Classes with Different Interfaces
 Incomplete Library Class
 Data Class
 Comments
 Refused Bequest

Catalog of Refactorings:

 Rename method, Move method, Extract method, Extract class, Hide
delegates, Inline class ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 8Spring 2016

Smell: Duplicated Code

If the same code structure is repeated.

Extract Method - gather duplicated code
Pull Up Field - move to a common parent
Form Template Method - gather similar parts, leaving holes
Substitute Algorithm - choose the clearer algorithm
Extract class - for unrelated classes, create a new class with
functionality

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 9Spring 2016

Refactoring: Extract Method

 Sometimes we have methods that do too much. The more code in a
single method, the harder it is to understand and get right. It also
means that logic embedded in that method cannot be reused
elsewhere.

 The Extract Method refactoring is one of the most useful for reducing
the amount of duplication in code.

public class Person
{
 public int foo() {
 …
 int score = a*b+c;
 score = score * 0.8 / Math.PI;
 score *= factor;
 ...
 return score;
 }
}

public class Person
{
 public int foo() {
 …
 return compteScore(a,b,c,factor);
 }

 public int computeScore(int a, int b, int c, float factor) {
 int score = a*b+c;
 score = score * 0.8 / Math.PI;
 score *= factor;
 }
}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 10Spring 2016

Refactoring: Form Template Method

 If you find two methods in subclasses that perform the same steps, but do
different things in each step, create methods for those steps with the
same signature and move the original method into the base class

public class Person extends Party
{
 private String firstName;
 private String lastName;
 private Date dob;
 private String nationality;

 public void printNameAndDetails() {
 System.out.println("Name: " + firstName + " " + lastName);
 System.out.println("DOB: " + dob.toString() + ", Nationality: " + nationality);
 }
}

public abstract class Party { } public class Company extends Party
{
 private String name;
 private String companyType;
 private Date incorporated;

 public void printNameAndDetails() {
 System.out.println("Name: " + name + " " + companyType);
 System.out.println("Incorporated: " + incorporated.toString());
 }
}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 11Spring 2016

Refactoring: Form Template Method (After)

public class Person extends Party
{
 private String firstName;
 private String lastName;
 private Date dob;
 private String nationality;

 public void printDetails() {
 System.out.println("DOB: " + dob.toString() + ", Nationality: " + nationality);
 }

 public void printName() {
 System.out.println("Name: " + firstName + " " + lastName);
 }
}

public abstract class Party {
 public void printNameAndDetails() {
 printName();
 printDetails();
 }
 public abstract void printName();
 public abstract void printDetails();
}

public class Company extends Party
{
 private String name;
 private String companyType;
 private Date incorporated;

 public void printDetails() {
 System.out.println("Incorporated: " + incorporated.toString());
 }

 public void printName() {
 System.out.println("Name: " + name + " " + companyType);
 }
}

Did you recognize GoF design pattern?Did you recognize GoF design pattern?

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 12Spring 2016

Refactoring: Extract Class

 Break one class into two.

public class Customer
{
 private String name;
 private String workPhoneAreaCode;
 private String workPhoneNumber;
 private String homePhoneAreaCode;
 private String homePhoneNumber;
}

public class Customer
{
 private String name;
 private Phone workPhone;
 private Phone homePhone;
}

public class Phone
{
 private String areaCode;
 private String number;
}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 13Spring 2016

Refactoring: Substitute Algorithm

 Choose the clearer algorithm. Next code prints items separated
by comma (no comma is printed after the last item).

for (int i = 0; i < items.length-1; i++) {
 System.out.println(items[i] + ”,”);
}
System.out.println(items[items.length-1]);

for (int i = 0; i < items.length; i++) {
 System.out.println(items[i]);
 if (i < items.length-1) System.out.println(“,”);
}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 14Spring 2016

Smell: Long Method

If the body of a method is over a page (choose your page size)

Extract Method - extract related behavior
Replace Temp with Query - remove temporaries when they
obscure meaning
Introduce Parameter Object - slim down parameter lists by
making them into objects
Replace Method with Method Object - still too many parameters
Decompose Conditionals - conditional and loops can be moved
to their own methods

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 15Spring 2016

Refactoring: Replace Temp with Query

 You are using a temporary variable to hold the result of an expression. Extract
the expression into a method. Replace all references to the temp with the
expression. The new method can then be used in other methods and allows for
other refactorings.

 double basePrice = quantity * itemPrice;
 if (basePrice > 1000)

return basePrice * 0.95;
 else

return basePrice * 0.98;

{ ...
 if (basePrice() > 1000)

return basePrice() * 0.95;
 else

return basePrice() * 0.98;
 …
}

double basePrice() {
return quantity * itemPrice;

}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 16Spring 2016

Refactoring: Introduce Parameter Object

 Slim down parameter lists by making them into objects (e.g. via
nested class).

public void handleEmployee(String name, String address, double salary, String evaluation) {
...

}

public void handleEmployeee(EmployeeParams params) {
params.getName();

 ...
}

public class EmployeeParams {
private String name;
private String address;
private double salary;
private String evaluation;

public String getName() { return name; }
...

}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 17Spring 2016

Refact.: Replace Method with Method Object

 You have a long method that uses local variables in such a way that you cannot
apply Extract Method => Turn the method into its own object so that all the local
variables become fields on that object. You can then decompose the method into
other methods on the same object.

public class Order {
...
double price() {

double primaryBasePrice;
double secondaryBasePrice;
double tertiaryBasePrice;
// long computation;
...

}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 18Spring 2016

Refactoring: Decompose Conditionals

 You have a complicated conditional (if-then-else) statement => Extract methods
from the condition, then part, and else parts.

if (date.before (SUMMER_START) || date.after(SUMMER_END)) {
charge = quantity * _winterRate + _winterServiceCharge;

} else {
charge = quantity * _summerRate;

}

if (notSummer(date)) {
charge = winterCharge(quantity);

} else {
charge = summerCharge (quantity);

}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 19Spring 2016

Smell: Long Parameter List

A method does not need many parameter, only enough to be able to retrieve what it
needs

Replace Parameter with Method - turn a parameter into a message
Introduce Parameter Object - turn several parameters into an object

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 20Spring 2016

Refactoring: Replace Parameter with Method

 An object invokes a method, then passes the result as a parameter for a method.
The receiver can also invoke this method => Remove the parameter and let the
receiver invoke the method.

int basePrice = quantity * itemPrice;
discountLevel = getDiscountLevel();
double finalPrice = discountedPrice(basePrice, discountLevel);

int basePrice = quantity * itemPrice;
double finalPrice = discountedPrice (basePrice);

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 21Spring 2016

Smell: Shotgun Surgery

If you find yourself making a lot of small changes for each desired change

Move Method/Field – pull all the changes into single class
Inline Class – group a bunch of behavior together

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 22Spring 2016

Refactoring: Move Method/Field

 A method is, or will be, using or used by more features of another class than the
class on which it is defined => Create a new method with a similar body in the
class it uses most. Either turn the old method into a simple delegation, or remove
it altogether.

 A field is, or will be, used by another class more than the class on which it is
defined => Create a new field in the target class, and change all its users.

<<

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 23Spring 2016

Refactoring: Inline Class

 A class isn't doing very much => Move all its features into another class and delete it.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 24Spring 2016

Smell: Speculative Generality

If a class has features that are only used in test cases, remove them.

Collapse Hierarchy - for useless abstract classes
Inline Class - for useless delegation
Rename Method - methods with odd abstract names should be
brought down to earth

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 25Spring 2016

Refactoring: Collapse Hierarchy

 A superclass and subclass are not very different => Merge them together.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 26Spring 2016

Refactoring: Rename Method

 The name of a method does not reveal its purpose => Change the name of the
method.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 27Spring 2016

Smell: Middle Man

An intermediary object is used too often to get at encapsulated values

Remove Middle Man - to talk directly to the target
Replace Delegation with Inheritance - turns the middle man into
a subclass of the real object

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 28Spring 2016

Refactoring: Remove Middle Man

 A class is doing too much simple delegation => Get the client to call the delegate
directly.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 29Spring 2016

Refact.: Replace Delegation with Inheritance

 You're using delegation and are often writing many simple delegations for the
entire interface => Make the delegating class a subclass of the delegate.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 30Spring 2016

Smell: Inappropriate Intimacy

Classes are too intimate and spend too much time delving in each other’s
private parts

Move Method/Field - to separate pieces in order to reduce
intimacy
Extract Class - make a common class of shared behavior/data
Replace Inheritance with Delegation - when a subclass is
getting too cozy

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 31Spring 2016

Refact.: Replace Inheritance with Delegation

 A subclass uses only part of a superclasses interface or does not want to inherit
data => Create a field for the superclass, adjust methods to delegate to the
superclass, and remove the subclassing.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 32Spring 2016

Smell: Message Chain

Long chains of messages to get to a value are brittle as any change in the
intermittent structure will break the code

Hide Delegate - remove one link in a chain
Extract Method - change the behavior to avoid chains

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 33Spring 2016

Refactoring: Hide Delegate

 A client is calling a delegate class of an object => Create methods on the server
to hide the delegate.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 34Spring 2016

Smell: Switch Statements

Switch statements lead to duplication and inhibit change

Extract method - to remove the switch
Move method - to get the method where polymorphism can apply
Replace Type Code with State/Strategy - set up inheritance
Replace Conditional with Polymorphism - get rid of the switch

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 35Spring 2016

Ref.: Replace Conditional with Polymorphism
 You have a conditional that chooses different behavior depending on the type of

an object => Move each leg of the conditional to an overriding method in a
subclass. Make the original method abstract.

double getSpeed() {
 switch (type) {
 case EUROPEAN: return getBaseSpeed();
 case AFRICAN: return getBaseSpeed() - getLoadFactor() * numberOfCoconuts;
 case NORWEGIAN_BLUE: return (isNailed) ? 0 : getBaseSpeed(voltage);
 }
 throw new RuntimeException ("Should be unreachable");
}

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 36Spring 2016

Refact.: Replace Type Code with State/Strategy

 You have a type code that affects the behavior of a class, but you cannot use
subclassing => Replace the type code with a state object.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 37Spring 2016

Lecture 4 / Part 2:

Bad Smells In Code
(Overview of Another Bed Smells)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 38Spring 2016

Bad Smells in Code

Large Class (stench 7)

If a class has either too many variables or too many methods

Extract Class - to bundle variables/methods

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 39Spring 2016

Bad Smells in Code

Divergent Change (stench 5)

If you find yourself repeatedly changing the same class then
there is probably something wrong with it

Extract Class - group functionality commonly changed into a class

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 40Spring 2016

Bad Smells in Code

Feature Envy (stench 6)

If a method seems more interested in a class other than the class it
actually is in

Move Method - move the method to the desired class
Extract Method - if only part of the method shows the symptoms

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 41Spring 2016

Bad Smells in Code

Data Clumps (stench 4)

Data items that are frequently together in method signatures and
classes belong to a class of their own

Extract Class - turn related fields into a class
Introduce Parameter Object - for method signatures

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 42Spring 2016

Bad Smells in Code

Primitive Obsession (stench 3)

Primitive types inhibit change

Replace Data Value with Object - on individual data values
Move Method/Field - pull all the changes into a single class
Introduce Parameter Object - for signatures
Replace Array with Object - to get rid of arrays

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 43Spring 2016

Bad Smells in Code

Parallel Inheritance Hierarchies (stench 6)

If when ever you make a subclass in one corner of the hierarchy,
you must create another subclass in another corner

Move Method/Field - get one hierarchy to refer to the other

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 44Spring 2016

Bad Smells in Code

Lazy Class (stench 4)

If a class (e.g. after refactoring) does not do much, eliminate it.

Collapse Hierarchy- for subclasses
Inline Class - remove a single class

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 45Spring 2016

Bad Smells in Code

Temporary Field (stench 3)

If a class has fields that are only set in special cases, extract them

Extract Class - for the special fields

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 46Spring 2016

Bad Smells in Code

Comments (stench 2)

Comments are often a sign of unclear code... consider refactoring

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 47Spring 2016

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47

