
PA103 - Object-oriented Methods for Design of Information Systems

Design Patterns

© Radek Ošlejšek
Fakulta informatiky MU

oslejsek@fi.muni.cz

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 2Spring 2016

Many levels of software patterns

 Small

 Coding patterns, e.g. SmallTalk Best Practice Patterns

 Code refactoring, e.g. Parameters reduction, ...

 Middle

 Design patterns, e.g. Adapter, Facade, ...

 Analysis and business patterns, e.g. Accounting, Measurement, ...

 Big

 Architectural patterns, e.g. SOA, peer-to-peer, layers, ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 3Spring 2016

History

 1977-1979: Christopher Alexander (an architect) defined the pattern term for
building homes, buildings and towns.

 1987: Kent Back and Ward Cunningham have applied Alexander's ideas to the
development of SmallTalk GUI

 1889-1991: James Coplien: Advanced C++ Idioms book.

 1995: Gamma, Helm, Johnson, Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software

 1997: Martin Fowler: Analysis patterns

 Since that: many conferences and patterns for various domains and levels of
abstraction, e.g. Data Modeling Patterns (David Hay), Java Modeling in Color
with UML (Peter Coad), Java J2EE patterns, anti-patterns, real-time design
patterns, ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 4Spring 2016

History – Alexander's Pattern Language

 What defines quality of buildings?
 Freedom, lifetime, comfort, harmony

 Pattern: solution of the problem in given context
 Entrance passage

 Gradient of privacy

 Lights in both sides of a room

 Combined patterns => pattern language
 2534 patterns, from coarse-grained to fine-grained

Each pattern describes a problem which occurs over and over again in our environment and then describes
the core of the solution to that problem, in such a way that you can use this solution a million times over,

without ever doing it in the same way twice”

The Timeless Way of Building (1997)

A Pattern Language (1977)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 5Spring 2016

GoF Design Patterns

The Gang-of-Four: Erich Gamma, Richard
Helm, Ralph Johnson, John Vlissides

Design Patterns: Elements of Reusable
Object Oriented Software (1995).

Why are we, Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, called this? Who knows.
Somehow the name just stuck. Hopefully like, the original Gang of Four, we have started a small cultural
change with "Design Patterns..." And hopefully unlike the original Gang of Four we will not meet such an
untimely end for our ("counter-revolutionary"?) ideas.

Vlissidies pronunciation (dialogue from the internet discussion with his long-time colleague):
Q: And I'd like to make sure I pronounce his name correctly.
A: The weird part is I've known John for years and I'm not even sure :-)

 The pronunciation I generally use is VLIH-Suh-dees. I've heard others use VLIH-SEE-DEES...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 6Spring 2016

Design Patterns

 Design pattern is a general reusable solution to a commonly occuring
problems in software design.

 Description or template of how to solve a problem that can be solved in many
different situations.

 Patterns facilitate reuse of successful software architectures and designs.
 Patterns capture the static and dynamic structure and collaboration among key

participants in software design.
 Pattern is not a finished design. It's rather a metamodel which have to be

instantiated. Moreover, it is necessary to
 consider compromises and consequences

 make design and implementation decisions

 implement them and combine them with other patterns

 Common vocabulary, e.g. “Here we use the Observer pattern.”

 enhanced communication between/within development teams

 faster design

 culture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 7Spring 2016

Patterns vs. Design Confidence

 General inexperience with OO design
 Is my model correct?

 Patterns improves design confidence
 You can alway lay the blame on “Gang of Four”
 Keeps free space for creativity

 Problem: many people know patterns
 Partially, without the deep understanding,
 Patterns are better and better as you use them longer and longer

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 8Spring 2016

Common Problems

 Wrong premise: The best is to apply as many patterns as possible to my model
 Applying pattern to solve wrong problem
 Cost and sources required to re-design software by means of design patterns
 Everything can be solved by the last learned pattern.
 Patterns have often very similar visual structure. Designer therefore have to fully

understand all aspects of patterns.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 9Spring 2016

Essential Elements of Design Patterns

 Pattern name
 Increases design vocabulary, enhances communication.

 Problem
 Describes when to apply the pattern.

 Explains the problem and its context.

 Often illustrated on example.

 Solution
 Describes the elements that make up the design, relationships, responsibilities and

collaborations.

 Does not describe specific concrete implementation.

 Consequences
 Results and trade-offs of applying pattern.

 Critical for evaluating design alternatives, understanding coasts, understanding benefits
of applying pattern.

 Includes the impacts of a pattern on a system's flexibility, extensibility and portability.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 10Spring 2016

Design Pattern Description

 Name and Classification: Essence of pattern

 Intent: What it does, its rationale, its context

 AKA: Other well-known names

 Motivation: Scenario illustrates a design problem

 Applicability: Situations where pattern can be applied

 Structure: Class and interaction diagrams

 Participations: Objects/classes and their responsibilities

 Collaborations: How participants collaborate

 Consequences: Trade-offs and results

 Implementation: Pitfalls, hints, techniques, etc.

 Sample Code

 Known Uses: Examples of pattern in real systems

 Related Patterns: Closely related patterns

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 11Spring 2016

Basic Classification of GoF Patterns

 Creational patterns:
 Deal with initializing and configuring classes and objects

 Hides specifics of the creation process

 May want to delay specifying a class name explicitly when instantiating
an object

 Structural patterns:
 Deal with decoupling interface and implementation of classes and

objects

 Composition of classes or objects, e.g. hierarchies.

 Use inheritance to compose protocols or code

 Behavioral patterns:
 Deal with dynamic interactions among societies of classes and objects

 Distribute responsibility

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 12Spring 2016

Creational Patterns

 Abstract Factory

 Factory for building related objects

 Builder

 Factory for building complex objects incrementally

 Factory Method

 Method in a derived class creates associates

 Prototype

 Factory for instantiating new objects by cloning them from a prototype

 Singleton

 Factory for singular (sole) instance in the system

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 13Spring 2016

Structural Patterns
 Adapter

 Translator of „server“ interface to our „client“ code

 Bridge

 Abstraction for binding one of many implementations

 Composite

 Structure for building recursive aggregations

 Decorator

 Extends an object transparently

 Facade

 Simplifies and aggregates the interface for a complex subsystem

 Flayweight

 Many fine-grained objects shared efficiently

 Proxy

 One object approximates another, e.g. due to efficiency or memory
requirements

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 14Spring 2016

Behavioral Patterns

 Chain of Responsibility

 Request delegated to the responsible service provider

 Command

 Request is first-class object

 Iterator

 Aggregate elements are accessed sequentially

 Interpreter

 Language interpreter for a small grammar

 Mediator

 Coordinates interactions between its associates

 Memento

 Stores and recovers object state

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 15Spring 2016

Behavioral Patterns (cont.)

 Observer

 Dependents update automatically when subject changes

 State

 Object whose behavior depends on its state

 Strategy

 Abstraction for selecting one of many algorithms

 Template Method

 Algorithms with some steps supplied by a derived class

 Visitor

 Operations applied to elements of a heterogeneous object structure

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 16Spring 2016

Organizing the Catalog

Chain of
responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Adapter (object)

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Abstract factory

Builder

Prototype

Singleton

Object

Interpreter

Template method

Adapter (class)Factory methodClassScope

BehavioralStructuralCreational

Purpose

 Scope is the domain over which a pattern applies

 Class scope: Relations between base classes and their subclasses (static semantics).

 Object scope: Relationships between peer objects. Reuse of collection of objects is better achieved
through variations of their composition, rather through sub-classing.

 Some patterns apply to both scopes

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 17Spring 2016

Case Study: Chemical Structures

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 18Spring 2016

Initial Model

Chemical Structure Molecule Residue Atom

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 19Spring 2016

Initial Model (cont.)

 Every object in running OO system must be referenced

 Every class must be associated with another class, OR

 There exist only a few instances (often just one instance) in the system and
these instances have well-known access points (well-known addresses).

 Problem of our model:

 Atoms are references from their residuum, residua from their molecule, etc.
But what about (multiple) chemical structures? Who gives me pointer to
concrete chemical structure?

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 20Spring 2016

Singleton Pattern

public class Singleton {

 private static Singleton uniqueInstance;

 public static Singleton instance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }

 public void operation1() { … }

 public void operation2() { … }
};

Singleton invocation and use:

// First call. New instance is created in memory
Singleton.instance().operatio1();
…
// Next call. Invocation of the same or another method
// is performed on existing sole instance
Singleton.instance().operatio2();

Often protected constuctor

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 21Spring 2016

Singleton Properties

Applicability: Use the Singleton pattern when

 there must be exactly one instance of a class, and it must be accessible to clients from
a well-known access point.

Consequences:

 Controlled access to sole instance.

 Reduced name space

 Avoids polluting the name space with global variables that store sole instances.

 Permits refinement of operations and representation

 The Singleton class may be subclassed, and it's easy to configure an application with an
instance of this extended class.

 You can configure the application with an instance of the class you need at run-time.

 Permits a variable number of instances.

 More flexible than class operations

 Another way is to use class operations (i.e. static methods). But it usually makes it hard
to change a design to allow more than one instance of a class. Moreover, static functions
are never virtual, so subclasses can't override them polymorphically.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 22Spring 2016

Singleton – Case Study

Next step: Generalize and simplify the model.

This model consists of a lot of duplicit code (very similar methods).
If we come to realize that the model represents a tree of objects then
we can generalize classes to parent-child abstraction, unify methods
(e.g. addChild, removeChild, etc.), reduce duplicit code and make
the model easily extensible and manageable.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 23Spring 2016

Composite Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 24Spring 2016

Composite Properties

Applicability: Use the Composite pattern when
 you want to represent part-whole hierarchies of objects.

 you want clients to be able to ignore the difference between compositions of objects
and individual objects. Clients will treat all objects in the composite structure uniformly.

Consequences:
 Defines class hierarchies consisting of primitive objects and composite objects.

 Makes the client simple. Clients can treat composite structures and individual objects
uniformly.

 Makes it easier to add new kinds of components.

 Can make your design overly general.

 The disadvantage is that it makes it harder to restrict the components of a composite.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 25Spring 2016

+instance() : Model
+loadChemStructure(File)

<<singleton>>
<<composite-composite>>

Model

<<composite-composite>>
ChemStructure

<<composite-composite>>
Molecule

<<composite-composite>>
Residue

-color : Color

+setColor(Color)

<<composite-leaf>>
Atom

+add(ModelElement)
+remove(ModelElement)
+get(int) : ModelElement
+setColor(Color)

<<composite-component>>
ModelElement

+add(ModelElement)
+remove(ModelElement)
+get(int) : ModelElement
+setColor(Color)

<<composite-composite>>
GroupElement

superElement

subElements

1..*

setColor() is applied to all children

Patterns are often combined

Composite – Case Study

Q: How to hide impelemenation of children list (now it's indexed array)
and how to support various iterations through children and/or various
impelementations of children list in subclasses?

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 26Spring 2016

Iterator Pattern

See java.util.Collectionjava.util.Collection and java.util.Iteratorjava.util.Iterator, for instance.
Thanks to the Iterator Pattern, Java can support ”foreach” cycle.

+createIterator() : Iterator

Aggregate

+createIterator() : Iterator
ConcreteAggregate

+first()
+next()
+hasNext() : boolean
+current() : Item

Iterator

ConcreteIterator

ClientItem

*

<<instantiate>>

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 27Spring 2016

Iterator Pattern (cont.)

Iterator obtains link to its originating
ConcreteAggregate instance

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 28Spring 2016

Iterator Properties

 Applicability: Use the Iterator pattern
 to access an aggregate object's contents without exposing its internal

representation.

 to support multiple traversals of aggregate objects.

 to provide a uniform interface for traversing different aggregate structures (that
is, to support polymorphic iteration).

 Consequences:
 It supports variations in the traversal of an aggregate.

 Iterators simplify the Aggregate interface.

 More than one traversal can be pending on an aggregate.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 29Spring 2016

Iterator – Case Study

Note 1: The subElements attribute has been moved from GroupElement to individual subclasses.
Note 2: It is not necessary to have a special iterator for each composite class. On the contrary,
 one iterator can be shared by multiple composists.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 30Spring 2016

Case Study Extension: „Shaking“ Molecule

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 31Spring 2016

Case Study Extension: „Shaking“ Molecule

There can be many subclasses with common interface but different behavior.
Subclasses can be therefore understood as different strategies of the computation of atom position.

-positions : Vector3[]

+getPosition(frame : int) : Vector3

HugeMemAtom

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

BufferedAtom

Atoms are "shaking", we know
the exact position of atoms in
frames (analogy to movie frames)

Atom positions are stored
in memory (in array)

Only selected time window is stored in memory, e.g. 10
frames. The window can be moved forward/back which
invokes loading atom positions from the file on demand.

+getPosition(frame : int) : Vector3

Atom
-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 32Spring 2016

Strategy Pattern

Example: Context = window of text editor, Strategy = line-breaking algorithm

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 33Spring 2016

Strategy Properties

 Applicability: Use the Strategy pattern when

 Many related classes differ only in their behavior. Strategies provide a way to configure a
class with one of many behaviors.

 You need different variants of an algorithm.

 An algorithm uses data that clients shouldn't know about.

 A class defines many behaviors, and these appear as multiple conditional statements in
its operations. Instead of many conditionals, move related conditional branches into their
own Strategy class.

 Consequences:

 Hierarchies of Strategy classes define families of related algorithms (useful for reuse).

 An alternative to subclassing.

 Strategies eliminate conditional statements (switch-case).

 Different implementations of the same behavior.

 Client must understand how Strategies differ before it can select the appropriate one.

 Communication overhead between Strategy and Context.

 Increased number of objects.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 34Spring 2016

Strategy – Case Study

+conctextInterface()

Context

+algorithmInterface()

Strategy

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

ConcreteStrategyB

1

-positions : Vector3[]

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AllInMemStrategy

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
BufferedStrategy

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AtomPositionStrategy1

Every atom can have its own strategy

+getPosition(frame : int) : Vector3

<<strategy-context>>
Atom

-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 35Spring 2016

Strategy in Java

 Question: Which well-known part of Java Core PI uses Strategy?

 Hint: Focus on sorted collections.

 Answer: Comparator defines strategy for sorting objects in SortedSet,
for instance.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 36Spring 2016

Strategy – Case Study

+conctextInterface()

Context

+algorithmInterface()

Strategy

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

ConcreteStrategyB

1

-positions : Vector3[]

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AllInMemStrategy

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
BufferedStrategy

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AtomPositionStrategy1

Every atom can have its own strategy

+getPosition(frame : int) : Vector3

<<strategy-context>>
Atom

-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 37Spring 2016

Strategy – Case Study

+conctextInterface()

Context

+algorithmInterface()

Strategy

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

ConcreteStrategyB

1

-positions : Vector3[]

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AllInMemStrategy

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
BufferedStrategy

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AtomPositionStrategy1

Every atom can have its own strategy

+getPosition(frame : int) : Vector3

<<strategy-context>>
Atom

-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 38Spring 2016

Questions?

TO BE CONTINUED...TO BE CONTINUED...

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38

