
PA103 - Object-oriented Methods for Design of Information Systems

Design Patterns (cont.)

© Radek Ošlejšek
Fakulta informatiky MU

oslejsek@fi.muni.cz

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 2Spring 2016

State – Motivation

Visually similar to Strategy and also with similar purpose.

Allow an object to alter its behavior when its internal state changes.

+handle(Document)

<<Interface>>
PrinterState

+handle(Document)

Ready

+handle(Document)

Printing

+handle(Document)

OutOfToner

+print(Document)

Printer
state

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 3Spring 2016

State Pattern

+handle()

<<Interface>>
State

+handle()

ConcreteStateA

+handle()

ConcreteStateB

+request()
Context state

Context delegates state-specific requests to the current ConcreteState object.

A context may pass itself as an argument to the State object handling the request.
This lets the State object access the context if necessary.

Context is the primary interface for clients. Clients can configure a context with
State objects. Once a context is configured, its clients don't have to deal with
the State objects directly.

Either Context or the ConcreteState subclasses can decide which state succeeds
another and under what circumstances.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 4Spring 2016

State Properties

 Applicability: Use State when
 an object's behavior depends on its state, and it must change its behavior at

run-time depending on that state.

 operations have large, multipart conditional statements that depend on the
object's state.

 Consequences:
 It localizes state-specific behavior and partitions behavior for different states.

 It makes state transitions explicit.

 State objects can be shared (see Flyweight pattern later).

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 5Spring 2016

Adapter – Motivation

Also known as wrapper.

Converts interface to compatible form.

Similar principle to spanner bit sockets
or power plug adapters.

See e.g. java.owt.WindowsAdapter

Client

+display(x, y, w, h)

<<Interface>>
Shape

+display(x, y, w, h)

Rectangle

+show(x1, y1, x2, y2)

LegacyRectangle

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 6Spring 2016

Class Adapter

request() methods adapted by multiple inheritance.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 7Spring 2016

Object Adapter

Request() methods adapted by re-sending to associated adaptee.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 8Spring 2016

Adapter Properties

 Applicability: Use the Adapter pattern when
 you want to use an existing class, and its interface does not

match the one you need.

 you want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

 (object adapter only) you need to use several existing
subclasses, but it's impractical to adapt their interface by
subclassing every one. An object adapter can adapt the interface
of its parent class.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 9Spring 2016

 Consequences (class adapter):
 adapts Adaptee to Target by committing to a concrete Adapter

class. As a consequence, a class adapter won't work when we
want to adapt a class and all its subclasses.

 lets Adapter override some of Adaptee's behavior, since Adapter
is a subclass of Adaptee.

 introduces only one object, and no additional pointer indirection
is needed to get to the adaptee.

 Consequences (object adapter):
 lets a single Adapter work with many Adaptees – that is, the

Adaptee itself and all of its subclasses (if any).

 makes it harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass
rather than the Adaptee itself.

Adapter Properties (cont.)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 11Spring 2016

Decorator Pattern – Another Example

+getLabel()
+getPrice()

Pizza

PizzaWithSuasage PizzaWithCheese PizzaWithSpinach

PizzaWithSausageAndCheese

PizzaWithSuasageAndCheeseAndSpinach

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 12Spring 2016

Decorator Pattern – Another Example

Sometimes we want to add responsibilities to individual objects, not to an entire class.
Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending functionality.

aPizza

getLabel
getPrice

getLabel
getPrice

aPizza

aCheese

aSausage

getLabel
getPrice

getLabel
getPrice

getLabel
getPrice

aCheese

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 13Spring 2016

Decorator Pattern

Decorator subclasses are free to add operations for specific functionality.

The important aspect of this pattern is that it lets decorators appear anywhere
a Component can.

Important difference from Composite

Important difference from Composite

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 14Spring 2016

Decorator Properties

 Applicability: Use Decorator
 to add responsibilities to individual objects dynamically and transparently, that

is without affecting other objects.

 for responsibilities that can be withdrawn.

 when extension by subclassing is impractical. Sometimes a large number of
independent extensions are possible and would produce an explosion of
subclasses to support every combination.

 Consequences:
 More flexibility than static inheritance.

 Avoids feature-laden classes high up in the hierarchy. Instead of trying to
support all foreseeable features in a complex, customizable class, you can
define a simple class and add functionality incrementally with Decorator
objects.

 Liability: A decorator and its component aren't identical.

 Liability: Lots of little objects.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 15Spring 2016

Decorator – Related Patterns and Applications

 Adapter: A decorator is different from an adapter in that a decorator
only changes an object's responsibilities, not its interface; an adapter
will give an object a completely new interface.

 Composite: A decorator can be viewed as a degenerate composite
with only one component. However, a decorator adds additional
responsibilities—it isn't intended for object aggregation.

 Strategy: A decorator lets you change the skin of an object; a strategy
lets you change the guts. These are two alternative ways of changing
an object.

 Question: Which standard well-known part of Java API is designed as
Decorator?

java.io.BufferedReader, ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 16Spring 2016

Decorator – Case Study

This is our previous model of “shaking” atoms decomposed by Strategy pattern.
How it could come off when we apply Decorator pattern instead?

-positions : Vector3[]

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AllInMemStrategy

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
BufferedStrategy

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AtomPositionStrategy1

Every atom can have its own strategy

+getPosition(frame : int) : Vector3

<<strategy-context>>
Atom

-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 17Spring 2016

Decorator – Case Study (cont.)

+getPosition() : Vector3

<<decorator-concrete-component>>
StaticAtom

-posBuffer : Dequeue<Vector3>

<<decorator-concrete-decorator>>
BufferedAtom

-position : Vector3[]

+goToFrame(frame : int)

<<decorator-concrete-decorator>>
AllInMemAtom

+DynamicAtom(component : Atom, src : File)
+firstFrame()
+nextFrame()
+previousFrame()

<<decorator-decorator>>
DynamicAtom

+getPosition() : Vector3

<<decorator-component>>
Atom

1

componentcomponent

1

+operation()
Component

+operation()
ConcreteComponent

+operation()
Decorator

-addedState

+operation()

ConcreteDecoratorA
+operation()
+addedBehaviour()

ConcreteDecoratorB

1

component

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 18Spring 2016

Abstract Factory – Motivation

+createSctrollBar()
+createWindow()

<<Interface>>
WidgetFactory

+createSctrollBar()
+createWindow()

AndroidWidgetFactory
+createSctrollBar()
+createWindow()

IOSWidgetFactory

<<Interface>>
Window

<<Interface>>
ScrollBar

AndroidWindowISOWindow

AndroidScrollBarIOSScrollBar

Client

<<instantiate>>

<<instantiate>>

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 19Spring 2016

Abstract Factory Pattern

+createProductA()
+createProductB()

<<Interface>>
AbstractFactory

+createProductA()
+createProductB()

ConreteFactory1

+createProductA()
+createProductB()

ConcreteFactory2

AbstractProductA

AbstractProductB

ProductA1ProductA2

ProductB1ProductB2

Client

<<instantiate>>

<<instantiate>>

<<instantiate>>

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 20Spring 2016

Abstract Factory Properties

 Applicability: Use the Abstract Factory pattern when

 A system should be independent of how its products are created, composed,
and represented.

 A system should be configured with one of multiple families of products.

 A family of related product objects is designed to be used together, and you
need to enforce this constraint.

 You want to provide a class library of products, and you want to reveal just
their interfaces, not their implementations.

 Consequences:

 It isolates clients from implementation classes.

 It makes exchanging product families easy.

 It promotes consistency among products.

 Supporting new kinds of products is difficult.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 21Spring 2016

Flyweight Pattern – Motivation

+ Flexibility at the finest levels, e.g. character set assign to each character.
- Even moderate-sized documents may require hundreds of thousands of character objects.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 22Spring 2016

Flyweight Pattern
aClient aClient

aFlyweightFactory

aConcreteFlyweight aConcreteFlyweight

A flyweight is a shared object that can be used in multiple contexts
simultaneously.

Intrinsic state is stored in the flyweight; it consists of information that's independent of the flyweight's
context, thereby making it sharable.
Extrinsic state depends on and varies with the flyweight's context and therefore can't be shared.
Client objects are responsible for passing extrinsic state to the flyweight when it needs it.

+getFlyweight(key)

FlayweightFactory

+operation(extrinsicState)

Flyweightflyweights *

Client

-intrinsicState

+operation(extrinsicState)

ConcreteFlyweight

*flyweights

-allState

+operation(extrinsicState)

UnsharedConcreteFlyweight

Not all Flyweight subclasses need
to be shared, e.g. row/column.

The Flyweight interface enables
sharing, it doesn't enforce it.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 23Spring 2016

Flyweight Properties

 Applicability: Apply the Flyweight pattern when all of the following are true:
 An application uses a large number of objects.

 Storage costs are high because of the sheer quantity of objects.

 Many groups of objects may be replaced by relatively few shared objects once
extrinsic state is removed.

 The application doesn't depend on object identity. Since flyweight objects may
be shared, identity tests will return true for conceptually distinct objects.

 Consequences:
 Flyweights may introduce run-time costs associated with transferring, finding,

and/or computing extrinsic state, especially if it was formerly stored as intrinsic
state. However, such costs are offset by space savings.

 Storage savings are a function of several factors:

 the reduction in the total number of instances that comes from sharing
 the amount of intrinsic state per object
 whether extrinsic state is computed or stored.

 The more flyweights are shared, the greater the storage savings.

 The Flyweight pattern is often combined with the Composite pattern to
represent a hierarchical structure as a graph with shared leaf nodes.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 24Spring 2016

Flyweight – Case Study

Problem:
Typical molecule consist of thousands of atoms of a few types, e.g. Oxygen and Hydrogen.
Instantiating individual object for every single atom waste the memory because some pieces
of information can be shared, e.g. atom name, charge, temperature factor, etc. On the other
hand, some data are specific for each atom, e.g. the 3D position (calculated by means of
the position strategy).

-positions : Vector3[]

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AllInMemStrategy

-posBuffer : Dequeue<Vector3>

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
BufferedStrategy

+getPosition(frame : int) : Vector3

<<strategy-strategy>>
AtomPositionStrategy1

Every atom can have its own strategy

+getPosition(frame : int) : Vector3

<<strategy-context>>
Atom

-name : String

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 25Spring 2016

Flyweight – Case Study

+getPosition(atom : Atom, frame : int) : Vector3

<<singleton>>
<<flyweight-client>>

Model

ChemStructure

Molecule

Residue

-name : String

+setColor()
+getPosition(strategy : AtomPositionStrategy) : Vector3

<<composite-leaf>>
<<concrete-flyweight>>
<<strategy-context>>

Atom

+add(ModelElement)
+remove(ModelElement)
+get(int) : ModelElement
+setColor()

<<composite-component>>
<<flyweight>>
ModelElement

+add(ModelElement)
+remove(ModelElement)
+get(int) : ModelElement
+setColor()

<<composite-composite>>
<<unshared-concrete-flyweight>>

GroupElement

-periodicTable : Atom[]

+getAtom(name) : Atom
+getMolecule(name) : Molecule
+loadChemStructure(File) : ChemStructure

<<singleton>>
<<flyweight-factory>>

ChemicalFactory

superElement

subElements

1..*

*periodic table element

1

<<strategy-strategy>>
AtomPositionStrategy

AtomPositionContext

1

1..*

subElements

superElement

periodic table element *

*

1

1
*

AllInMemStrategy

BufferedStrategy

<<instantiate>>

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 26Spring 2016

Memento Pattern

capture and externalize an object's internal state so that the object
can be restored to this state later

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 27Spring 2016

Memento - cooperation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 28Spring 2016

 Memento - properties

 Applicability: Use the Memento pattern when

 a snapshot of (some portion of) an object's state must be saved so that it can be
restored to that state later, and

 a direct interface to obtaining the state would expose implementation details and
break the object's encapsulation.

 Consequences:

 Preserving encapsulation boundaries.

 It simplifies Originator. In other encapsulation-preserving designs, Originator keeps
the versions of internal state that clients have requested. That puts all the storage
management burden on Originator.

 Using mementos might be expensive. Mementos might incur considerable
overhead if Originator must copy large amounts of information to store in the
memento or if clients create and return mementos to the originator often enough.

 Defining narrow and wide interfaces. It may be difficult in some languages to
ensure that only the originator can access the memento's state.

 Hidden costs in caring for mementos. A caretaker is responsible for deleting the
mementos it cares for. However, the caretaker has no idea how much state is in
the memento.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 29Spring 2016

Observer – Motivation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 30Spring 2016

Observer Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 31Spring 2016

Observer – Collaborations

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 32Spring 2016

Observer Properties

 Applicability: Use the Observer pattern in any of the following situations:
 When an abstraction has two aspects, one dependent on the other.

Encapsulating these aspects in separate objects lets you vary and reuse them
independently.

 When a change to one object requires changing others, and you don't know
how many objects need to be changed.

 When an object should be able to notify other objects without making
assumptions about who these objects are. In other words, you don't want these
objects tightly coupled.

 Consequences:
 Abstract coupling between Subject and Observer. All a subject knows is that it

has a list of observers, each conforming to the simple interface of the abstract
Observer class.

 Support for broadcast communication.

 Unexpected updates. Because observers have no knowledge of each other's
presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation on the subject may cause a cascade of
updates to observers and their dependent objects.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 33Spring 2016

Proxy Pattern

Example: mobile applications

Client

+request()

Subject

+request()

RealSubject

+request()

ProxyrealSubj

1

: Client : Proxy : RealSubject

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 34Spring 2016

Proxy Properties

 Applicability: Proxy is applicable whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer. Here are several
common situations in which the Proxy pattern is applicable:

 A remote proxy provides a local representative for an object in a different
address space.

 A virtual proxy creates expensive objects on demand.

 A protection proxy controls access to the original object.

 A smart reference is a replacement for a bare pointer that performs additional
actions when an object is accessed.

 Consequences: The Proxy pattern introduces a level of indirection when
accessing an object. The additional indirection has many uses, depending on the
kind of proxy:

 A remote proxy can hide the fact that an object resides in a different address
space.

 A virtual proxy can perform optimizations such as creating an object on
demand.

 Both protection proxies and smart references allow additional housekeeping
tasks when an object is accessed.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 35Spring 2016

Bridge – Motivation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 36Spring 2016

Bridge Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 37Spring 2016

Bridge Properties

 Applicability: Use the Bridge pattern when:
 you want to avoid a permanent binding between an abstraction and its

implementation. This might be the case, for example, when the implementation
must be selected or switched at run-time.

 both the abstractions and their implementations should be extensible by
subclassing. In this case, the Bridge pattern lets you combine the different
abstractions and implementations and extend them independently.

 changes in the implementation of an abstraction should have no impact on
clients; that is, their code should not have to be recompiled.

 you have a proliferation of classes. Such a class hierarchy indicates the need
for splitting an object into two parts.

 Consequences:
 Decoupling interface and implementation.

 Improved extensibility.

 Hiding implementation details from clients.

 Question: Which part of java.io is designed as Bridge?

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 38Spring 2016

Facade – Motivation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 39Spring 2016

Facade – Motivation (cont.)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 40Spring 2016

Facade Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 41Spring 2016

Facade Properties

 Applicability: Use the Facade pattern when:
 you want to provide a simple interface to a complex subsystem.

 there are many dependencies between clients and the implementation classes
of an abstraction. Introduce a facade to decouple the subsystem from clients
and other subsystems, thereby promoting subsystem independence and
portability.

 you want to layer your subsystems. Use a facade to define an entry point to
each subsystem level.

 Consequences:
 It shields clients from subsystem components, thereby reducing the number of

objects that clients deal with and making the subsystem easier to use.

 It promotes weak coupling between the subsystem and its clients.

 It doesn't prevent applications from using subsystem classes if they need to.
Thus you can choose between ease of use and generality.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 42Spring 2016

Builder -- Motivation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 43Spring 2016

Builder Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 44Spring 2016

Builder – Collaborations

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 45Spring 2016

Builder Properties

 Applicability: Use the Builder pattern when

 the algorithm for creating a complex object should be independent of the parts that
make up the object and how they're assembled.

 the construction process must allow different representations for the object that's
constructed.

 Consequences:

 It lets you vary a product's internal representation.

 It isolates code for construction and representation.

 Each ConcreteBuilder contains all the code to create and assemble a
particular kind of product. The code is written once; then different
Directors can reuse it to build Product variants from the same set of parts.
In the earlier RTF example, we could define a reader for a format other
than RTF, say, an SGMLReader, and use the same TextConverters to
generate ASCIIText, TeXText, and TextWidget renditions of SGML
documents.

 It gives you finer control over the construction process.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 46Spring 2016

Visitor – Motivation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 47Spring 2016

Visitor Pattern

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 48Spring 2016

Visitor - Collaboration

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 49Spring 2016

Visitor Properties

 Applicability: Use the Visitor pattern when

 an object structure contains many classes of objects with differing interfaces, and
you want to perform operations on these objects that depend on their concrete
classes.

 many distinct and unrelated operations need to be performed on objects in an
object structure, and you want to avoid "polluting" their classes with these
operations.

 the classes defining the object structure rarely change, but you often want to
define new operations over the structure.

 Consequences:

 Visitor makes adding new operations easy.

 A visitor gathers related operations and separates unrelated ones.

 Adding new ConcreteElement classes is hard.

 Visiting across class hierarchies. Visitor can visit objects that don't have a common
parent class. You can add any type of object to a Visitor interface.

 Accumulating state.

 Breaking encapsulation.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 50Spring 2016

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49
	Snímek 50

