
Software Architectures
definition, design, qualitative attributes, tunning

© R. Ošlejšek and B. Bühnová
Faculty of Informatics

Masaryk University
oslejsek@fi.muni.cz

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 2Spring 2016

Why software architectures?

How to fill the gap between requirements
and code?

• How to reduce the risk of the code
deflection from user requirements?

• How to reduce the risk of unsuitable
structured code?

• How to reduce the risk of making a code
which is hardly comprehensible or
modifiable?

Motivation

Requirements

Code

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 3Spring 2016

The role of software architecture

• Coarse-grained structure of the system

– Well-defined, distributable

• Abstraction on the system level

– Dividing the functionality to responsibilities
distributed among modules/components of the
system

Motivation – Solution

Requirements

Code

 Architecture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 4Spring 2016

• Definition of software architecture

• The role of software architect

• Software architecture design

– Requirements

– Architecture design

• The process of development

• Techniques of qualitative design

– Evaluation of SW architectures

• Qualitative attributes of SA

• Tunning tactics

• Overview of relevant topics

Lecture outline

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 5Spring 2016

To date there is still no agreement on the precise definition of software architecture.

Architecture of a software system is composed of a set of fundamental design
decisions about the system. [Taylor et al. 2009]

Software architecture of deployed software is defined by aspects that are hardly to
change. [Klusener et al. 2005]

Software architecture of program or computational system is a system structure
which is composed of software elements, externally visible features of these
elements and mutual relationships between them. [Bass et al. 2003]

Architecture is a basic structure of a system incorporated into components and their
mutual and external relationships, and a set of principles covering the design
and development. [ANSI/IEEE Standard 1471/2000]

Definition of software architecture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 6Spring 2016

Three basic elements:

1. Modules = “components” comprising the functionality of the system (often run on
parallel)

• encapsulated parts of software, packages, processes, threads, components, etc.

2. Connectors = communication links and channels (often with its own inner logic)

• procedure and method calls, channels for message distribution (publish-subscribe
style), etc.

3. Deployment = mapping of modules and connectors to hardware (or software)
sources

• physical resources and servers (with parameters like CPU frequency, HD size,
communication speed, etc.).

• operating systems or application servers.

Fundamental parts of software architecture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 7Spring 2016

Mutual communication

• Unified view on the system from the perspective of various roles participating on the
development, including the roles on the customer side.

System analysis

• Prediction of qualitative attributes of the architecture

Re-usability

• Single architecture proposed to fulfill concrete non-functional requirements can become a
basic design structure for many systems.

• Integration of external modules

• Design of a module usable in wide range of systems

Project planning

• Price estimation, scheduling milestones in the development process, dependency analysis

Advantages of well-defined system architecture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 8Spring 2016

Software designer

• Must be able to recognize, re-use or find new effective design approaches and apply them.

Domain expert

• Must have detail knowledge and understanding of the application domain, its significant features and
strangenesses.

Technical engineer

• Must know technical aspects of proposed solution.

Expert on SW/HW standards

• Must be well-informed about relevant standards in order to estimate and communicate their benefits and
impacts.

Economist of software engineering

• Must balance the project and the its development process so that the required features are implemented
effectively.

Roles of software architect

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 9Spring 2016

Three main activities of architectural design:

• Requirements specification

– Functional and extra-functional

• Architecture design

– Basic design decisions

– Architectural models

– Development process

– Techniques of high-quality design

• Evaluation of SW architecture

– Qualitative attributes of SA

– Methods of quality evaluation

– Tunning tactics

Software architecture design

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 10Spring 2016

Three main activities of architectural design:

• Requirements specification

– Functional and extra-functional

• Architecture design

– Basic design decisions

– Architectural models

– Development process

– Techniques of high-quality design

• Evaluation of SW architecture

– Qualitative attributes of SA

– Methods of quality evaluation

– Tunning tactics

Software architecture design

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 11Spring 2016

Functional requirements = restrictions put on the functionality of the system. It concerns
internal functionality of components as well as the inter-component collaboration:

• The serviceA() service requires at most 10 cooperating components.

• Every open transaction (a service provided by another component) should be closed
before the the component opens a new transaction.

• Component must not be blocked during the evaluation of their services (when waiting to
the result of external components).

Non-functional (extra-functional) requirements = restrictions on the implementation and
behavior of the functionality.

• Garateed response time in X% of calls.

• Availability X% every month.

• HW/SW compatibility.

Requirements on SW architecture

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 12Spring 2016

• Requirements specification

– Functional and extra-functional

• Architecture design

– Basic design decisions

– Architectural models

– Development process

– Techniques of high-quality design

• Evaluation of SW architecture

– Qualitative attributes of SA

– Methods of quality evaluation

– Tunning tactics

Software architecture design

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 13Spring 2016

Typical questions asked by software architect:

• Is there some architecture prescript that should be taken into account for the system?

• Which kind of structuring (decomposition) process will be used?

• How to decompose the system into sub-systems (modules, components)?

• What can be re-used from previous projects?

• What would be re-usable in future projects?

• Which components can or cannot be bought?

• Which architectural styles best suits the system?

• Which kind of distribution is possible and suitable?

• How to communicate with existing software?

• How to access existing data?

Fundamental design questions

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 14Spring 2016

They define
• Modules – system components

• Connectors – communication styles

• Deployment – mapping onto HW/SW sources

Architectural models

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 15Spring 2016

Modules = system components

• Model of static structure – defines internal structure of the system. Internal elements are
either composite (composed from sub-elements) or primitive (include code).

• UML – component diagram for composite elements, class diagram for primitive elements

Architectural models – modules

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 16Spring 2016

Connectors = communication styles

• Procedural (dynamic) model – defines mutual interaction between components of the system

• UML – sequence diagram, communication diagram, activity diagram

Architectural models – connectors

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 17Spring 2016

Deployment = the mapping onto HW/SW sources

• Deployment model – defines structure of the system (including its characteristics) and the mapping
of modules and communication links onto these sources

• UML – deployment diagram

Architectural models – deployment

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 18Spring 2016

The main tasks of the development process:

1. Identify system components.

2. Identify interfaces of system components.

3. Design connectors between components (interfaces).

4. Identify which parts of the system should be allocated on shared nodes.

5. Evaluate quality of the proposed architecture.

Development process

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 19Spring 2016

Tasks 1.-3. can be performed in different order depending on selected methodology

Top-down approach – gradual refinement of the architecture

1. Design the whole system as a single component with defined interfaces

2. Break up the component into the first-level sub-components and their connections

3. Break up sub-components into lower levels, stop at sufficiently primitive components

4. Implement, find or buy components corresponding with the proposed primitive components

Bottom-up approach – assembling the architecture from predefined components

• Select candidate components from library

• Try to assemble components to hi-level components, use only the interfaces that are necessary for
required functionality

• Proceed step by step until the top-level component (= the system)

• Remove unused components (those that was not finally used)

Architectural design tactics

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 20Spring 2016

Architectural patterns

• Techniques of the architecture design proven by practice

• Re-usable for various systems

Quality metrics

• Quantitative evaluation of the quality of a design based on objective criteria (number of
inter-module links, module size, etc.)

Correctness by construction

• Design techniques composed of identifiable steps. Each step guarantees a quality of the
result.

Techniques of a hi-quality design

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 22Spring 2016

• Requirements specification

– Functional and extra-functional

• Architecture design

– Basic design decisions

– Architectural models

– Development process

– Techniques of high-quality design

• Evaluation of SW architecture

– Qualitative attributes of SA

– Methods of quality evaluation

– Tunning tactics

Software architecture design

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 23Spring 2016

Related mainly on non-functional (extra-functional) requirements:

Non-functional (extra-functional) requirement of software system defines restrictions on
the implementation.

Extra-functional attribute is concrete qualitative aspect related to extra-functional
requirement.

Examples of basic extra-functional qualitative attributes:

• Performance – throughput, response time, efficiency of utilization of various sources

• Reliability – faultless running, availability, robustness, ability to recover

• Security – confidentiality, integrity, availability

• Scalability – load, concurrent communication, data scaling

• Maintainability – modifiability, adaptability

Qualitative attributes of SA

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 24Spring 2016

Monitoring and testing = verification of the quality of existing system

• Cheap and popular method

• Applicable on implemented system

• Imprecise results (e.g. depend on the number of testing cycles)

Prediction from model = quality estimation of the system under development

• Requires (simplified) model of the system, which is created and elaborated during the design time.

• Usable during the whole process of the architectural design

• Quality of results strongly depends on the model and its attention to detail

Formal verification = verification of assumptions formulated about the system

• The most expensive but most accurate method

• Evaluation is performed on the model which is well-elaborated for the verification purposes (can be
partially generated from code or from design models)

• To guarantee precision of results, it is necessary to make big effort to fine tune the model (and its
levels of detail)

Methods for quality evaluation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 25Spring 2016

Tuning of software architecture is the optimization of selected qualitative attribute by adjusting the
architecture.

Advantages:

• Practice-proven techniques used to increase the quality of the system from the point of view of selected
qualitative attribute

Attention:

• Optimization is not guaranteed. Often only a minor optimization is achieved.

• There is the danger of making another attributes worse.

It is necessary to apply tuning tactics in common sense and to understand mutual connections
between attributes as well as the impact of tactics to them.

Tuning tactics

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 26Spring 2016

Performance reflects the ability of a software system to fulfill the requirements for fast response and
high throughput of the system together with the minimization of computational resources.

Minimize number of adapters and wrappers by adjusting interfaces

• How: Cleaning up interfaces, changes of signatures of provided services

• Effect: The reduction of resources that handle a single service call

Simplify communication handled by interface

• How: Offer more interfaces for the same functionality

• Why: Different interfaces can be designated for different runtime context (e.g. clients of different
platforms using different data formats). In their specific context they could operate more efficiently.

Tactics – Performance

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 27Spring 2016

Separate data from the computation

• Why: Data can be better optimized without the need to make changes in software (computational)
components and, vice versa, computational algorithms can be optimized without the changes in data.

Revise the utilization of broadcast connectors

• Why: Message broadcasting increases reliability of message delivery but also increases the load of
the system. Therefore we should omit its needless usage.

Replace synchronous communication with asynchronous whenever possible

• Why: With synchronized communication, the slowest component slows down all other components
involved in the sequence of the call.

Often mutually communicating components should be allocated close to each other

• Why: To minimize network communication which is slower that in-memory communication

Tactics – Performance

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 28Spring 2016

Reliability of a software system is probability that the system will provide
expected functionality (with respect to design restrictions) without errors and
failures for the given period of time.

Carefully check external dependencies of components

• Why: It's necessary to ensure that wrong behavior of single component has only minimal
impact on the faultlessness of other components.

Allow selected components to expose their state, and define state variants

• Why: If it is not possible to guarantee the reliability of a component, then access to its
internal state enables its clients to check and evaluate the “state of health” at runtime by
means of predefined state invariants.

Employ suitable error reporting mechanisms

• Why: If component fails, it should be able to inform the rest of the system about the
reason, e.g. via exceptions.

Tactics – Reliability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 29Spring 2016

Check reliability of components in their connectors

• Why: Reduces the probability of the failure propagation beyond the component border

Avoid the existence of critical parts (single points of failure)

• How: Components replication, decomposition of a component to multiple components according to
their responsibilities, strengthening control abilities of connectors located around these components.

• Why: Failure occurred in such a critical part will highly propable paralyze the whole system.

Integrate auto-backup and recovery mechanisms of critical functionality and data into
the system

• Why: Reducing the risk of reliability breach due to data loss or disruption of functionality.

Integrate “health state” monitoring to the system

• Why: Possibility of fast reaction.

Tactics – Reliability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 30Spring 2016

Scalability is the ability of software system to adapt itself to new requirements
related to the system size and scope.

Make components sufficiently integral, with clear purpose and easy-to-
understand interface

• Why: Adding new components or their replication will have minimal impact on the other
parts of the system.

Distribute data sources

• Why: To avoid common bottleneck which often erases during the system expansion (many
components accessing a single data source).

Identify data suitable for replication

• Why: The possibility to serve more clients accessing the data concurrently.

Tactics – Scalability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 31Spring 2016

Ensure sufficient integrity and well-defined purpose to every connector

• Why: The same reason as in the case of components

Consider replacing direct dependencies with indirect

• Why: Direct dependencies (through associations, i.e. synchronous calls) are not convenient during
the system expansion because they require multiplication of the relationships. Less restrictive
connection by means of indirect dependencies (through sending messages via broadcasting, for
instance) is much more suitable in this case.

Eliminate bottlenecks of the system (components and connectors used by more clients
concurrently)

• Why: Avoiding the slowing down the system when number of such clients is increased.

Use parallel processing on suitable parts of the system

• Why: Acceleration of expensive calculations required by increasing number of clients.

Tactics – Scalability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 32Spring 2016

Maintainability represents difficulty to change a software system in response to new
requirements, changes in environment or debugging.

Split different responsibilities to different components / merge the same
responsibilities to the same components

• Why: Faster localization of parts requiring some changes.

Remove operations related to interaction from components, keep only operations
related to functionality

• Why: Interaction logic should be located in connectors.

Keep component small and compact

• Why: You can easily modify small functionality of the system by replacing selected component.

Isolate data from computation

• Why: It increases the probability that changes in data will not require changes in computation and
vice versa.

Tactics – Maintainability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 33Spring 2016

Separate different communication principles from different connectors

• Why: Easy allocation of part requiring a change, including components which can be affected by this
change.

Remove operations related to functionality from connectors, keep only operations
related to interaction

• Why: Functionality should be located in components.

Eliminate unnecessary dependences

• Why: Plenty of dependencies decreases understandability of the system.

Make the architecture hierarchical

• Why: Possibility of multiple views on the system on different levels of abstraction.

Tactics – Maintainability

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 34Spring 2016

• Component-based software engineering

– System develpoment from COTS (Components of The Shelf)

• Service-oriented architectures (SOA)

– Systems development based on the integration of autonomous services

• Aspect-oriented architectures

– Integration of crosscutting concerns

• Software product sets

– Families of products with a shared core and variable points

• Dynamic and adaptive architectures

– Architectures adaptable to run-time changes in the environment

• Model-driven architectures (MDA)

– M2M transformations and (semi)automatic models refinement

Brief Overview of Follow-up Topics

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 35Spring 2016

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35

