
Architectural Patterns
Layers, broker, MVC, ...

© R. Ošlejšek
Faculty of Informatics

Masaryk University
oslejsek@fi.muni.cz

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 2Spring 2016

Architectural Patterns

Architectural pattern is named collection of architectural design decisions that are
applicable to design problems appearing over and over again, which are parametrized under
various contexts of software development. [Taylor et al.]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 3Spring 2016

Layers

• Helps to structure applications that can be
decomposed into groups of subtasks in which each
group of subtask is at a particular level of abstraction.

• [Buschmann et al: Pattern-Oriented Software
Architecture, 1997]

Layer 1: Physical

Layer 2: Data Link

Layer 3: Network

Layer: 4: Transport

Layer 5: Session

Layer 7: Application

Layer 6: Presentation

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 4Spring 2016

Layers – Structure

• Higher layers are on a higher level of abstraction (i.e. more general, higher level
services).

• Layer N provides services used by layer N+1

• Layer N delegates subtasks to layer N-1

• Services of a layer N are only used by layer N+1 (there are no further direct
dependencies between layers)

• Layers are complex entities consisting of different components

<<component>>
Component 3.1

<<component>>
Component 3.2

<<component>>
Component 3.3

<<component>>
Component 2.1

<<component>>
Component 2.2

<<component>>
Component 1.1

<<component>>
Component 1.2

<<component>>
Component 1.3

 Layer 3

 Layer 2

 Layer 1

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 5Spring 2016

Layers – Dynamics

• Top-down communication: A client issues a request to layer N. Layer N calls the next layer
N-1 for supporting subtasks and so on until layer 1 is reached. Layer N often translates a
single request into several requests to layer N-1.

• Bottom-up communication: A chain of actions starts at the lower layer 1, e.g. when a device
driver detects input. Upper layers are notified and provided data are interpreted by the
upper layers.

• Communication through a subset of the layers: For example, if layer N acts as a cache
which is able to satisfy a request without sending sub-requests to lower layers. Usually
requires statefull implementation of components. This scenario is applicable to the both
top-down and bottom-up communication directions.

layer 1

layer 2

layer 3client
layer 3

layer 2

layer 1client

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 6Spring 2016

Layers – Variants

• Relaxed Layered System:

– Each layer may use the services of all layers bellow it, not only of the next lower
layer.

– Higher flexibility and performance

– The loss of maintainability

• Layering Through Inheritance

– Layers implemented as base classes.

– A higher layer requesting services from a lower layer inherits from the lower
layer's implementation and hence can issue requests to the base class services.

– Higher layer can modify lower-layer services

– Closely ties the layers (recompilation of upper layer classes after the change in
lower layers, etc.)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 7Spring 2016

Layers – Known Uses

• Many information systems from the business software domain.

• Virtual machines: insulates higher levels from low-level details or varies
hardware, e.g. JVM.

• APIs: Encapsulates lower layers of frequently used functionality.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 8Spring 2016

Layers – Consequences

• Benefits:

– Reuse of layers due to well-defined abstraction

– Support for standardization due to clearly-defined and commonly-accepted levels of
abstraction.

– Dependencies are kept local, which supports testability, for instance.

• Proxy pattern for remote connection of layers

– Exchangeability of layers

• Adapter pattern for interface adaptation

• Bridge pattern for dynamic exchange (manipulating the pointer to the
implementation at run-time)

• Liabilities:

– Cascades of changing behavior of (lower) layers

– Lower efficiency due to the communication overhead

– Unnecessary work, e.g. duplicate work (error detection even if lower services are reliable)

– Difficulty of establishing the correct granularity of layers. Too few layers restricts reusability,
changeability and portability. Too many layers introduce complexity and communication
overhead.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 9Spring 2016

Layers or tiers?

• Logical layers are merely a way of organizing your code. Typical
layers include Presentation, Business and Data – the same as the
traditional 3-tier model. But when we’re talking about layers, we’re
only talking about logical organization of code. In no way is it
implied that these layers might run on different computers or in
different processes on a single computer or even in a single
process on a single computer. All we are doing is discussing a way
of organizing a code into a set of layers defined by specific function.

• Physical tiers however, are only about where the code runs.
Specifically, tiers are places where layers are deployed and where
layers run. In other words, tiers are the physical deployment of
layers.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 10Spring 2016

Pipes and Filters

• Provides a structure for systems that process a stream of data. Each processing
step is encapsulated in a filter component. Data are passed through pipes
between adjacent filters. Recombining filters allows as to build families of
related systems.

• [Buschmann et al: Pattern-Oriented Software Architecture, 1997]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 11Spring 2016

Pipes and Filters – Structure

• Pipe: Denotes the connection between filters.

• Passive filter: The subsequent pipeline element pulls output data from the filter
OR the previous pipeline element pushes new input data to the filter.

• Active filter: the filter is active in a loop, puling its input from and pushing its
output.

• Data source: represents the input to the system

• Data sink: collects the results from the end of the pipeline.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 12Spring 2016

Pipes and Filters – Dynamics I

• Push pipeline (passive filters)

Data SinkFilter 2
push

Filter 1
push

Data Source
push

1.2.2: write(data)

1.2.1: process(data)
1.2: write(data)

1.1: process(data)
1: write(data)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 13Spring 2016

Pipes and Filters – Dynamics II

• Pull pipeline (passive filters)

Data Sink
pull

Filter 2
pull

Filter 1
pull

Data Source

1: read

data

1.2: process(data)

data

data
1.1.3: process(data)

1.1.1: read

1.1: read

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 14Spring 2016

Pipes and Filters – Dynamics III

• Mixed push-pull pipeline (passive filters)

Data SinkFilter 2
pull/push

Filter 1
pull

Data Source

3: write(data)

2: process(data)
data

1.3: process(data)
data

1.1: read

1: read

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 15Spring 2016

Pipes and Filters – Dynamics IV

• Active filters: The most common behavior, where all filters actively pull,
compute, and push data in a loop.

Data SinkData Source Filter 1
pull/push

Buffering Pipe Filter 2
pull/push

8: write(data)
7.2:

7.1: data

7: read

6: write(data)

4.2.4: write(data)

4.2.2: data

4.2.1: read

4.2.3: process(data)

5: process(data)
4.1: data

4: write(data)

3: process(data)
2.1: data

2: read

1: read

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 16Spring 2016

Pipes and Filters – Known Uses

• UNIX

• complex event processing (CEP)

• graphics pipeline (OpenGL)

• ...

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 17Spring 2016

Pipes and Filters – Consequences

• Benefits:

– No intermediate files necessary, but possible

– Flexibility by filter exchange

– Flexibility by recombination

– Reuse of filter components

– Rapid prototyping of pipelines

– Efficiency by parallel processing

• Liabilities:

– Sharing state information is expensive or inflexible

– Efficiency gain by parallel processing may be an illusion (due to the cost for transferring
data between filters, some filters consume all their input before producing any output, …)

– Data transformation overhead (e.g. conversion of numbers to ASCII in every pipe)

– Error handling, failure recovery

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 18Spring 2016

Blackboard
• Is useful for problems for which no deterministic strategies are known. In

Blackboard several specialized subsystems assemble their knowledge to build
a possibly partial approximate solution.

• [Buschmann et al: Pattern-Oriented Software Architecture, 1997]

• Metaphor:

– A group of specialists are seated in a room with a large blackboard. They work as a team to
brainstorm a solution to a problem, using the blackboard as the workplace for cooperatively
developing the solution.

– The session begins when the problem specifications are written onto the blackboard. The
specialists all watch the blackboard, looking for an opportunity to apply their expertise to the
developing solution. When someone writes something on the blackboard that allows
another specialist to apply their expertise, the second specialist records their contribution
on the blackboard, hopefully enabling other specialists to then apply their expertise. This
process of adding contributions to the blackboard continues until the problem has been
solved.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 19Spring 2016

Blackboard – Structure
• Blackboard:

– Central data store. We use the term vocabulary for the set of of all data elements that
can appear on the blackboard.

– Provides an interface that enables all knowledge sources to read from and write to it.

• Knowledge sources:

– Separate independent subsystems that solve specific aspects of the overall problem.

– They don't communicate directly but strictly throw the blackboard (they have to
understand the vocabulary of the blackboard).

– They usually operate on two levels of abstraction, transforming particular solution to a
higher-level solution.

• Control:

– Monitors blackboard.

– Schedules knowledge source actions.

-solutions
-controlData

+inspect()
+update()

Blackboard

+updateBlackboard()
+execCondition()
+execAction()

Knowledge Source

+loop()
+nextSource()

Control

**

activates

operates on

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 20Spring 2016

Blackboard – Dynamics

loop

sdselect source

Knowledge
Source 2

Knowledge
Source 1

BlackboardControl

5.3: update

5.2: inspect

5.1: updateBlackboard
5: execAction

1: nextSource

4.1: inspect
4: execCondition

3.1: inspect
3: execCondition

2: inspect

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 21Spring 2016

Blackboard – Known Uses

• Some modern Bayesian machine learning systems, using agents to add and
remove Bayesian network nodes.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 22Spring 2016

Blackboard – Consequences

• Benefits:

– Experimentation, e.g. trying different control heuristics.

– Support for changeability and maintainability due to the strict separation of individual
knowledge sources, the control algorithm and the central data structure.

– Reusable knowledge sources.

• Liabilities:

– Difficulty of testing.

– No good solution is guaranteed.

– Difficulty to establish a good control strategy.

– Low efficiency.

– High development effort.

– No support for parallelism.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 23Spring 2016

Broker

• Can be used to structure distributed software systems with decoupled
components that interact by remote service invocation. A broker component is
responsible for coordinating communication.

• [Buschmann et al: Pattern-Oriented Software Architecture, 1997]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 24Spring 2016

Broker – Structure
• Clients:

– Implement user functionality. Send requests to servers. To call the remote service,
clients forward requests to the broker. Client do not need to know the location of of the
servers they access.

• Servers:

– Implement services. Server may act as client.

• Brokers:

– Messengers responsible for the transmission from clients to servers. If the specified
server is hosted by another broker, the local broker finds a route to the remote broker.

• Bridges:

– Optional components used for hiding implementation details when two broker cooperate.

• Client-side proxies:

– Layer between clients and the broker providing transparency, i.e. a remote object
appears to the client as a local one.

• Server-side proxies:

– Analogous to Client-side proxies. Responsible for receiving requests.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 25Spring 2016

Broker – Structure (cont.)

Broker Server-side
Proxy

Server

1..*

1..*

1..*

Bridge

0..*

CLient-side
Proxy

Client

*

uses APIcalls

transfers message

calls uses API
calls

transfers message

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 26Spring 2016

Broker – Dynamics (registration)

BrokerServer

2.3: enterMainLoop

2.2: registerService

1: mainEventLoop

2.1: initialize

2: start

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 27Spring 2016

Broker – Dynamics (request to local srv.)
ServerServer-side

Proxy
BrokerClient-side ProxyClient

1.1.2.2.4.2.1.1: result

1.1.2.2.4.2.1: unpackData

1.1.2.2.4.2: return

1.1.2.2.4.1: findClient

1.1.2.2.4: forwardResponse

1.1.2.2.2: runService

1.1.2.2.1: unpackData
1.1.2.2: callService

1.1.2.1: findServer
1.1.2: forwardRequest

1.1.1: packData
1.1: request

1: callServer

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 28Spring 2016

Broker – Dynamics (brokers interaction)

Broker BBridge BBridge ABroker A

1.2.1.1.1: findServer
1.2.1.1: forwardRequest

1.2.1: transmitMessage
1.2: forwardMessage

1.1: findServer
1: forwardRequest

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 29Spring 2016

Broker – Known Uses

• CORBA

• Microsoft's OLE 2.x

• Modern integration platforms, e.g. Apache Camel or Mule ESB

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 30Spring 2016

Broker – Consequences

• Benefits:

– Location transparency.

– Changeability and extensibility of components.

– Portability of a Broker system, which hides operating system and network system details
from clients and servers by using indirection layers such as APIs, proxies and bridges.

– Interoperability between different Broker systems.

– Reusability.

• Liabilities:

– Restricted efficiency.

– Lower fault tolerance (compared with non-distributed software system)

– Testing and debugging.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 31Spring 2016

Model-View-Controller, MVC

• Pattern solving interaction (strictly separated input and output)

• [Buschmann et al: Pattern-Oriented Software Architecture, 1997]

• The devil is in the details [http://www.zdrojak.cz/clanky/uvod-do-architektury-mvc/]

– Should be the presentation logic included in View or Controller? Should be the core
functionality of the application included in Controller or Model? How tight the connection
between the View and Controller should be? Could View connect the Model directly?

[Taylor et al. 2009]
Presentation layer

http://www.zdrojak.cz/clanky/uvod-do-architektury-mvc/

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 32Spring 2016

MVC – Structure
• Model:

– Provides functional core of the application. Encapsulates the appropriate data.

– Registers dependent view and controllers.

– Notifies dependent components about data change.

• View:

– Presents information to the user.

– Different views can present the model in different ways.

– Each view creates a suitable controller (1:1 relationship)

– Views often offer functionality that allows controllers to manipulate the display.

• Controller:

– Accepts user input as events. Events are translated into requests for model or the
associated view.

– If the behavior of the controller depends on the state of the model, the controller
registers itself with the change-propagation mechanism and implements an
update procedure.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 33Spring 2016

MVC – Structure (cont.)

+update()
Observer

View Controller11

Model

*

1 1

*

*

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 34Spring 2016

MVC – Dynamics (initialization)

Controller

View

Model

main program

6.1.1: startEventProcessing

5: attach(Controller)

4: <<construct>>(Model, View)

3: attach(View)

2: <<construct>>(Model)

1: <<construct>>

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 35Spring 2016

MVC – Dynamics (event)

ViewModelController

1.1.1.2.1: getData

1.1.1.2: update

1.1.1.1.1: display
1.1.1.1: update

1.1.1: notify
1.1: service

1: handleEvent

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 36Spring 2016

MVC – Known Uses

• Historical frameworks with terminals.

• WWW: Static HTML pages or pages with server-side scripting.

• Spring MVC, CakePHP, Zend and other MVC frameworks.

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 37Spring 2016

MVC – Consequences

• Benefits:

– Multiple view of the same model.

– Synchronized views.

– 'Pluggable' views and controllers.

– Exchangeability of 'look and feel'.

• Liabilities:

– Increase complexity.

– Potential for excessive number of updates.

– Intimate connection between view and controller.

– Close coupling of views and controllers to a model (changes to the model's interface are
likely to break the code of both view and controller).

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 38Spring 2016

Model-View-Presenter

Cndndfngngnggjgt nt4vnrhfvhfghfhfhffhfjfhfjjffnfhfrhrhhnrdjjjhgfffhfhhffhfgf `````````

MVC

MVP is a variation of MVC suitable for „widget“ applications (button is drown but also
handles I/O), or for modern web applications which have the ability to process GUI
events on client side (ASP.NET, Flex, JFace, AJAX, Swing, Google Web Toolkit,
Nette, ...)

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 39Spring 2016

Sense-Compute-Control (embedded systems)

Another examples of architectural patterns (I)

[Taylor et al. 2009]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 40Spring 2016

Peer-to-peer architecture is a distributed application architecture that partitions tasks or
work loads between peers. Peers are equally privileged, equipotent participants in the
application.

Another examples of architectural patterns (III)

[wikipedia]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 42Spring 2016

Often confused with architectural patterns!

Architectural style is named collection of architectural design decisions that (1) are applicable in
given context of the development, (2) restricts architectural design decisions which are specific for
concrete system within concrete context and (3) provide certain qualities in every proposed system.
[Taylor et al.]

Simple examples:

From the point of view of programming language

• The main program and procedures/functions

• Object-oriented paradigm

From the communication point of view

• Procedure/method/service invocation

• Message delivery

• Publish-subscribe notification

Architectural styles

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 43Spring 2016

Design patters

• Generic solutions for problems on design and coding
level

Architectural styles

• Summarizing architectural principles affecting the
code

Architectural patterns

• Generic solutions of architecture design

Domain-specific software architectures

• Design of complete structure of the application
according to selected domain

Architectural patterns and styles

[Taylor et al. 2009]

PA103: Object-oriented Methods for Design of Information Systems IS © R. Ošlejšek, FI MU 44Spring 2016

Questions?

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 42
	Snímek 43
	Snímek 44

