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The Notion of Entropy

m Entropy — “chaos” , fuzziness, opposite of order,. ..
m you know it
B it is much easier to create“mess” than to tidy things up...
m Comes from physics:
m Entropy does not go down unless energy is used
m Measure of uncertainty:
m if low ...low uncertainty

The higher the entropy, the higher uncertainty, but the higher
“surprise” (information) we can get out of experiment.
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The Formula

Let px(x) be a distribution of random variable X

Basic outcomes (alphabet) Q

H(X) = = > req p(x) log; p(x)

Unit: bits (logo: nats)
Notation: H(X) = H,(X) = H(p) = Hx(p) = H(px)
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Using the Formula: Example

m Toss a fair coin: Q = {head, tail}
m p(head) = .5, p(tail) = .5
m H(p) = —0.5l0g,(0.5) + (—0.5log,(0.5)) =
2x((-05) x(-1))=2x05=1

1
m Take fair, 32-sided die: p(x) = . for every side x

m H(p) = =2 im1 5o P(Xi) loga p(xi) = =32(p(x1) log; p(x1))
(smce for all i p(x;) = p(x1) = &
—32 % (35 X (=5)) =5 (now you see why it's called bits?)
m Unfair coin:
m p(head)
m p(head)

2 ...H(p)
1...H(p)
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Example: Book Availability

Entropy |H(p)
1
bad baokstore good baokstore
0 /
0 05 1 < p(Book Available)
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The Limits

m When H(p) =07

m if a result of an experiment is known ahead of time:
® necessarily:

Ix € Qi p(x) = 1&Yy € Q;y # x = p(y) =0

m Upper bound?

m none in general
m for |Q |=n: H(p) <log, n

m nothing can be more uncertain than the uniform distribution
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Entropy and Expectation

m Recall:
= E(X) = ZXEX(Q) Px(x) % x
m Then:

()-S5

- ZXGX(Q) Px (X) |0g2 pX(X) = H(px) = notation H(P)
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Perplexity: motivation

m Recall:
m 2 equiprobable outcomes: H(p) = 1 bit
m 32 equiprobable outcomes: H(p) = 5 bits
m 4.3 billion equiprobable outcomes: H(p) & 32 bits
m What if the outcomes are not equiprobable?
m 32 outcomes, 2 equiprobable at 0.5, rest impossible:
m H(p) =1 bit
m any measure for comparing the entropy (i.e.
uncertainty/difficulty of prediction) (also) for random variables
with different number of outcomes?
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Perplexity

m Perplexity:
m G(p) =2H0)
m ...so we are back at 32 (for 32 eqp. outcomes), 2 for fair
coins, etc.
m it is easier to imagine:

m NLP example: vocabulary size of a vocabulary with uniform
distribution, which is equally hard to predict

m the “wilder” (biased) distribution, the better:
m lower entropy, lower perplexity

Pavel Rychly
Essential Information Theory |



Joint Entropy and Conditional Entropy

m Two random variables: X (space ), Y (V)
m Joint entropy:
m no big deal: ((X,Y) considered a single event):

_ Z Z p(x,y)log, p(x,y)

xEQyev

m Conditional entropy:

H(YIX)==> " p(x,y)log, p(y|x)

xeQ yewv

1
recall that H(X) = E | log, ——
( ) ( g2PAX)>

(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus)

m other definition:

HYIX) = > vea POOH(Y X = x) =
for H(Y|X = x), we can use
the single-variable definition (x ~ constant)
= Sren P(x) (= yew Py1x) loga plyx) ) =

= = Yveq Lyew Py [X)p(x) logs p(y[x) =
= = 2xen 2yew P(X;¥) logz p(y[x)
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Properties of Entropy |

m Entropy is non-negative:
m HX)>0
m proof: (recall: H(X) = =3 .q p(x) log, p(x))

log,(p(x)) is negative or zero for x <1,

p(x) is non-negative; their product p(x)log(p(x)) is thus
negative,

sum of negative numbers is negative,

and -f is positive for negative f

m Chain rule:
m H(X,Y) = H(Y|X)+ H(X), as well as
m H(X,Y) = H(X|Y)+ H(Y) (since H(Y,X) = H(X, Y))
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Properties of Entropy Il

m Conditional Entropy is better (than unconditional):
m H(Y|X) < H(Y)
| H(X, Y) < H(X) + H( Y) (follows from the previous (in)equalities)

m equality iff X|Y independent
m (recall: XY independent iff p(X,Y)=p(X)p(Y))

m H(p) is concave (remember the book availability
graph?)
m concave function f over an interval (a,b):
Vx,y € (a,b),VA € [0,1] :
FOAX+ (1= N)y) = M (x) + (1 = N)f(y)

m function f is convex if -f is concave

B for proofs and generalizations, see Cover/Thomas
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“Coding” Interpretation of Entropy

m The least (average) number of bits needed to encode a
message (string, sequence, series, ...) (each element having
being a result of a random process with some distribution p):
= H(p)

m Remember various compressing algorithms?

m they do well on data with repeating (= easily predictable =
= low entropy) patterns

m their results though have high entropy = compressing
compressed data does nothing
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Coding: Example

m How many bits do we need for ISO Latin 17
m = the trivial answer: 8
m Experience: some chars are more common, some (very) rare:
m ...so what if we use more bits for the rare, and less bits for
the frequent? (be careful: want to decode (easily)!)
m suppose: p('a’) = 0.3, p('b") = 0.3, p('c’) = 0.3, the rest:
p(x)=2.0004
m code: 'a’ ~ 00, 'b' ~ 01, 'c’ ~ 10, rest: 11byb,bsbsbsbgb7bg

m code 'acbbécbaac’:
00 10 01 01 1100001111 10 O1 OO0 OO0 10

a ¢ b b é c b a a c
m number of bits used: 28 (vs. 80 using “naive” coding)

1
m code length ~ —————; conditional prob. OK!
probability
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Entropy of Language

m Imagine that we produce the next letter using

p(/,,+1’/1, e /,,),

where 1, ..., is the sequence of all the letters which had
been uttered so far (i.e. nis really big!); let's call .../, the
history h(h,+1), and all histories H:
m Then compute its entropy:
- ZheH ZIEA p(!, h)log, p(I|h)
m Not very practical, isn't it?
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Cross-Entropy

Typical case: we've got series of observations

T ={t1,to, t3,ta, ..., tn} (numbers, words, ...; t; € Q);
estimate (sample): Yy € Q: p(y) = 7(_,}_/’)

def. c(y)=|{te T;t=y}|
... but the true p is unknown; every sample is too small!
Natural question: how well do we do using p (instead of p)?

Idea: simulate actual p by using a different T (or rather: by
using different observation we simulate the insufficiency of T
vs. some other data (“random” difference))
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Cross Entropy: The Formula

= Hy (p) = H(p) + D(p'um
(Hor(B) = = Seq P'(x) loga p(x))

m p’ is certainly not the true p, but we can consider it the “real
world" distribution against which we test p

m note on notation (confusing ...): B/ < p, also Hr/(p)
p

m (Cross)Perplexity: Gp(p) = G/(p) = oHy (P)
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Conditional Cross Entropy

m So far: “unconditional” distribution(s) p(x), p'(x). ..
m In practice: virtually always conditioning on context

m Interested in: sample space WV, r.v. Y, y € V;
context: sample space Q, r.v.X, x € Q:
“our” distribution p(y|x), test against p’(y, x), which is taken
from some independent data:

Hy(p)=— > pP(y.x)log,p(ylx)
YEWV xeQ
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Sample Space vs. Data

m In practice, it is often inconvenient to sum over the space(s)
W, Q (especially for cross entropy!)
m Use the following formula:
Hy(p) = = >_,cw xeq P'(¥: x) log, p(y|x) =
—1/|T'| Zi:l...\T’| log, p(yilxi)
m This is in fact the normalized log probability of the “test”
data:
Hy(p) = —1/|T'lloga [ p(yilx)
i=1..|T'|
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Computation Example

m Q= {a, b, .., Z}, prob. distribution (assumed/estimated from data):
p(a) = .25, p(b) = .5, p(a) = 6—14 for a € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

m Data (test): barb p'(a) = p'(r) = .25, p'(b) = .5

m Sum over
o a bcdefg..pgqzr st ...z
p'(logpley) .5+ .54+04+0+04+0+0+4+04+04+04+0+1.5+04+0+0+0+0 = 2.5

m Sum over data:
i/s 1/b 2/a 3/r 4/b //‘*l/lT’l
-logp(s) 1 + 2 + 6 + 1 =10 (1/4) x 10 =2.5
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Cross Entropy: Some Observations

m H(p) 77<,=,>77 Hy (p) : ALL!
m Previous example:
p(a) = .25, p(b) = .5, p(a)= 6714 for a € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

H(p) = 2.5bits = H(p')(barb)

m Other data: probable:
(3)(6+6+6+1+2+1+6+6) =425

H(p) < 4.25bits = H(p')(probable)

m And finally: abba: (£)(2+1+41+2)=15
H(p) > 1.5bits = H(p')(abba)

m But what about: baby —p'('y')log, p('y') = —.25l0g, 0 = oo (?7)
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Cross Entropy: Usage

m Comparing data??
m NO! (we believe that we test on real data!)

m Rather: comparing distributions (vs. real data)

m Have (got) 2 distributions: p and g (on some £, X)
m which is better?
m better: has lower cross-entropy (perplexity) on real data S

m “Real” data: S

& Hs(p) = ~1/IS| X,y s ogap(ilx) )
Hs(@) = ~1/IS1 0y 15, logaa(yilx)
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Comparing Distributions

m p(.) from previous example:
p(a) = .25, p(b) = .5, p(a) = 6714 for a € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

m g(.|.) (conditional; defined by a table):

Hs(p) = 4.25

qi.|)— a b 3 1 o P t other
4
a 0 5 0 0 0 125 0 0
) 1 0 0 ] 1 125 0 0 | ex.: qlor)y =1
e 0 0 0 1 0 125 0 lg—""]
1 0 3 0 0 0 125 0 i q@lpy=.125
o i 0 0 0 0 125 1™ |a /
P 0 0 0 0 0 125 0 1
' 0 0 0 0 0 125 eg——tr |
other |0 0 i 0 0 1250 0

(1/8) (log(p|oth.}+log(r|p)+log(ofr)+log(blo)*loglalb) +log(bla) +log(l[b)+log(<[l))

we)( 0 + 3 + 0

+

o + 1

+ 0 +

Hi(q) = .625
Pavel Rychly
Essential Information Theory |



