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The Notion of Entropy

Entropy – “chaos” , fuzziness, opposite of order,. . .
you know it

it is much easier to create“mess” than to tidy things up. . .

Comes from physics:

Entropy does not go down unless energy is used

Measure of uncertainty:

if low . . . low uncertainty

Entropy

The higher the entropy, the higher uncertainty, but the higher
“surprise” (information) we can get out of experiment.
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The Formula

Let px(x) be a distribution of random variable X

Basic outcomes (alphabet) Ω

H(X ) = −
∑

x∈Ω p(x) log2 p(x)

Unit: bits (log10: nats)

Notation: H(X ) = Hp(X ) = H(p) = HX (p) = H(pX )
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Using the Formula: Example

Toss a fair coin: Ω = {head , tail}
p(head) = .5, p(tail) = .5
H(p) = −0.5 log2(0.5) + (−0.5 log2(0.5)) =
2× ((−0.5)× (−1)) = 2× 0.5 = 1

Take fair, 32-sided die: p(x) =
1

32
for every side x

H(p) = −
∑

i=1...32 p(xi ) log2 p(xi ) = −32(p(x1) log2 p(x1))
(since for all i p(xi ) = p(x1) = 1

32
= −32× ( 1

32 × (−5)) = 5 (now you see why it’s called bits? )

Unfair coin:

p(head) = .2 . . .H(p) = .722
p(head) = .1 . . .H(p) = .081
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Example: Book Availability
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The Limits

When H(p) = 0?

if a result of an experiment is known ahead of time:
necessarily:

∃x ∈ Ω; p(x) = 1&∀y ∈ Ω; y 6= x ⇒ p(y) = 0

Upper bound?

none in general
for |Ω |= n : H(p) ≤ log2 n

nothing can be more uncertain than the uniform distribution
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Entropy and Expectation

Recall:

E (X ) =
∑

x∈X (Ω) px(x)× x

Then:

E

(
log2

(
1

p(x)

))
=
∑

x∈X (Ω) px(x) log2

(
1

px(x)

)
=

−
∑

x∈X (Ω) pX (x) log2 px(x) = H(px) =notation H(p)
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Perplexity: motivation

Recall:

2 equiprobable outcomes: H(p) = 1 bit
32 equiprobable outcomes: H(p) = 5 bits
4.3 billion equiprobable outcomes: H(p) ∼= 32 bits

What if the outcomes are not equiprobable?
32 outcomes, 2 equiprobable at 0.5, rest impossible:

H(p) = 1 bit

any measure for comparing the entropy (i.e.
uncertainty/difficulty of prediction) (also) for random variables
with different number of outcomes?
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Perplexity

Perplexity:

G (p) = 2H(p)

. . . so we are back at 32 (for 32 eqp. outcomes), 2 for fair
coins, etc.

it is easier to imagine:

NLP example: vocabulary size of a vocabulary with uniform
distribution, which is equally hard to predict

the “wilder” (biased) distribution, the better:

lower entropy, lower perplexity
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Joint Entropy and Conditional Entropy

Two random variables: X (space Ω), Y (Ψ)

Joint entropy:
no big deal: ((X,Y) considered a single event):

H(X ,Y ) = −
∑
x∈Ω

∑
y∈Ψ

p(x , y) log2 p(x , y)

Conditional entropy:

H(Y |X ) = −
∑
x∈Ω

∑
y∈Ψ

p(x , y) log2 p(y |x)

recall that H(X ) = E

(
log2

1

px(x)

)
(weighted “average”, and weights are not conditional)
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Conditional Entropy (Using the Calculus)

other definition:

H(Y |X ) =
∑

x∈Ω p(x)H(Y |X = x) =
for H(Y |X = x), we can use

the single-variable definition (x ∼ constant)

=
∑

x∈Ω p(x)
(
−
∑

y∈Ψ p(y |x) log2 p(y |x)
)

=

= −
∑

x∈Ω

∑
y∈Ψ p(y |x)p(x) log2 p(y |x) =

= −
∑

x∈Ω

∑
y∈Ψ p(x , y) log2 p(y |x)
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Properties of Entropy I

Entropy is non-negative:

H(X ) ≥ 0
proof: (recall: H(X ) = −

∑
x∈Ω p(x) log2 p(x))

log2(p(x)) is negative or zero for x ≤ 1,
p(x) is non-negative; their product p(x) log(p(x)) is thus
negative,
sum of negative numbers is negative,
and -f is positive for negative f

Chain rule:

H(X ,Y ) = H(Y |X ) + H(X ), as well as
H(X ,Y ) = H(X |Y ) + H(Y ) (since H(Y ,X ) = H(X ,Y ))
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Properties of Entropy II

Conditional Entropy is better (than unconditional):

H(Y |X ) ≤ H(Y )

H(X ,Y ) ≤ H(X ) + H(Y ) (follows from the previous (in)equalities)

equality iff X,Y independent
(recall: X,Y independent iff p(X,Y)=p(X)p(Y))

H(p) is concave (remember the book availability
graph?)

concave function f over an interval (a,b):
∀x , y ∈ (a, b),∀λ ∈ [0, 1] :
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)

function f is convex if -f is concave

for proofs and generalizations, see Cover/Thomas
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“Coding” Interpretation of Entropy

The least (average) number of bits needed to encode a
message (string, sequence, series, . . . ) (each element having
being a result of a random process with some distribution p):
= H(p)

Remember various compressing algorithms?

they do well on data with repeating (= easily predictable =
= low entropy) patterns
their results though have high entropy ⇒ compressing
compressed data does nothing
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Coding: Example

How many bits do we need for ISO Latin 1?

⇒ the trivial answer: 8

Experience: some chars are more common, some (very) rare:

. . . so what if we use more bits for the rare, and less bits for
the frequent? (be careful: want to decode (easily)!)
suppose: p(’a’) = 0.3, p(’b’) = 0.3, p(’c’) = 0.3, the rest:
p(x)∼=.0004
code: ’a’ ∼ 00, ’b’ ∼ 01, ’c’ ∼ 10, rest: 11b1b2b3b4b5b6b7b8

code ’acbbécbaac’:
00 10 01 01 1100001111 10 01 00 00 10
a c b b é c b a a c

number of bits used: 28 (vs. 80 using “naive” coding)

code length ∼ 1

probability
; conditional prob. OK!
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Entropy of Language

Imagine that we produce the next letter using

p(ln+1|l1, . . . ln),

where l1, . . . ln is the sequence of all the letters which had
been uttered so far (i.e. n is really big!); let’s call l1, . . . ln the
history h(hn+1), and all histories H:

Then compute its entropy:

−
∑

h∈H

∑
l∈A p(l , h) log2 p(l |h)

Not very practical, isn’t it?
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Cross-Entropy

Typical case: we’ve got series of observations
T = {t1, t2, t3, t4, . . . , tn} (numbers, words, . . . ; t1 ∈ Ω);

estimate (sample): ∀y ∈ Ω : p̃(y) =
c(y)

|T |
,

def. c(y) = |{t ∈ T ; t = y}|
. . . but the true p is unknown; every sample is too small!

Natural question: how well do we do using p̃ (instead of p)?

Idea: simulate actual p by using a different T (or rather: by
using different observation we simulate the insufficiency of T
vs. some other data (“random” difference))
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Cross Entropy: The Formula

Hp′(p̃) = H(p′) + D(p′||p̃)�� ��Hp′(p̃) = −
∑

x∈Ω p′(x) log2 p̃(x)

p′ is certainly not the true p, but we can consider it the “real
world” distribution against which we test p̃

note on notation (confusing . . . ):
p

p′ ↔ p̃, also HT ′(p)

(Cross)Perplexity: Gp′(p) = GT ′(p) = 2Hp′ (p̃)
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Conditional Cross Entropy

So far: “unconditional” distribution(s) p(x), p′(x). . .

In practice: virtually always conditioning on context

Interested in: sample space Ψ, r.v. Y , y ∈ Ψ;
context: sample space Ω, r.v.X , x ∈ Ω:
“our” distribution p(y |x), test against p′(y , x), which is taken
from some independent data:

Hp′(p) = −
∑

y∈Ψ,x∈Ω

p′(y , x) log2 p(y |x)
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Sample Space vs. Data

In practice, it is often inconvenient to sum over the space(s)
Ψ,Ω (especially for cross entropy!)

Use the following formula:
Hp′(p) = −

∑
y∈Ψ,x∈Ω p′(y , x) log2 p(y |x) =

−1/|T ′|
∑

i=1...|T ′| log2 p(yi |xi )
This is in fact the normalized log probability of the “test”
data:

Hp′(p) = −1/|T ′|log2

∏
i=1...|T ′|

p(yi |xi )
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Computation Example

Ω = {a, b, .., z}, prob. distribution (assumed/estimated from data):

p(a) = .25, p(b) = .5, p(α) = 1
64

for α ∈ {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

Data (test): barb p’(a) = p’(r) = .25, p’(b) = .5

Sum over Ω:

Sum over data:
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Cross Entropy: Some Observations

H(p) ??<,=, >?? Hp′(p) : ALL!

Previous example:
p(a) = .25, p(b) = .5, p(α)= 1

64
for α ∈ {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

H(p) = 2.5bits = H(p′)(barb)

Other data: probable:

( 1
8 )(6 + 6 + 6 + 1 + 2 + 1 + 6 + 6) = 4.25

H(p) < 4.25bits = H(p′)(probable)

And finally: abba: ( 1
4 )(2 + 1 + 1 + 2) = 1.5

H(p) > 1.5bits = H(p′)(abba)

But what about: baby −p′(‘y ‘) log2 p(‘y ‘) = −.25 log2 0 =∞ (??)
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Cross Entropy: Usage

Comparing data??

NO! (we believe that we test on real data!)

Rather: comparing distributions (vs. real data)

Have (got) 2 distributions: p and q (on some Ω,X )

which is better?
better: has lower cross-entropy (perplexity) on real data S

“Real” data: S

HS(p) = −1/|S |
∑

i=1..|S| log2p(yi |xi ) ??

HS(q) = −1/|S |
∑

i=1..|S | log2q(yi |xi )
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Comparing Distributions

p(.) from previous example:
�� ��HS(p) = 4.25

p(a) = .25, p(b) = .5, p(α) = 1
64

for α ∈ {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

q(.|.) (conditional; defined by a table):
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