NLP: The Main Issues

- Why is NLP difficult?
 - many "words", many "phenomena" --> many "rules"
 - OED: 400k words; Finnish lexicon (of forms): $\sim 2.10^7$
 - sentences, clauses, phrases, constituents, coordination, negation, imperatives/questions, inflections, parts of speech, pronunciation, topic/focus, and much more!
 - irregularity (exceptions, exceptions to the exceptions, ...)
 - potato -> potato es (tomato, hero,...); photo -> photo s, and even: both mango -> mango s or -> mango es
 - Adjective / Noun order: new book, electrical engineering, general regulations, flower garden, garden flower, ...: but Governor General

Difficulties in NLP (cont.)

- ambiguity
 - books: NOUN or VERB?
 - you need many books vs. she books her flights online
 - No left turn weekdays 4-6 pm / except transit vehicles (Charles Street at Cold Spring)
 - when may transit vehicles turn: Always? Never?
 - Thank you for not smoking, drinking, eating or playing radios without earphones. (MTA bus)
 - Thank you for not eating without earphones??
 - or even: Thank you for not drinking without earphones!?
 - · My neighbor's hat was taken by wind. He tried to catch it.
 - ...catch the wind or ...catch the hat?

(Categorical) Rules or Statistics?

· Preferences:

- clear cases: context clues: she books --> books is a verb
 - rule: if an ambiguous word (verb/nonverb) is preceded by a matching personal pronoun -> word is a verb
- less clear cases: pronoun reference
 - she/he/it refers to the most recent noun or pronoun (?) (but maybe we can specify exceptions)
- selectional:
 - catching hat >> catching wind (but why not?)
- semantic:
 - never thank for drinking in a bus! (but what about the earphones?)

Solutions

- Don't guess if you know:
 - · morphology (inflections)
 - lexicons (lists of words)
 - unambiguous names
 - · perhaps some (really) fixed phrases
 - · syntactic rules?
- Use statistics (based on real-world data) for preferences (only?)
 - · No doubt: but this is the big question!

Statistical NLP

Imagine:

- Each sentence $W = \{ w_1, w_2, ..., w_n \}$ gets a probability P(W|X) in a context X (think of it in the intuitive sense for now)
- For every possible context X, sort all the imaginable sentences W according to P(W|X):

Real World Situation

- Unable to specify set of grammatical sentences today using fixed "categorical" rules (maybe never, cf. arguments in MS)
- Use statistical "model" based on <u>REAL WORLD DATA</u> and care about the best sentence only (disregarding the "grammaticality" issue)

