
1

Software measurement

Jonathan I. Maletic

Department of Computer Science
Kent State University

2

Definitions

Measure - quantitative indication of extent, amount, dimension,
capacity, or size of some attribute of a product or process.

– Number of errors

Metric - quantitative measure of degree to which a system,
component or process possesses a given attribute. “A handle or
guess about a given attribute.”

– Number of errors found per person hours expended

3

Why Measure Software?

• Determine quality of the current product or process

• Predict qualities of a product/process

• Improve quality of a product/process

4

Example Metrics

• Defects rates

• Errors rates

• Measured by:
- individual
- module
- during development

• Errors should be categorized by origin, type, cost

5

Metric Classification

• Products
- Explicit results of software development activities
- Deliverables, documentation, by products

• Processes
- Activities related to production of software

• Resources
- Inputs into the software development activitie
- Hardware, knowledge, people

6

Product vs. Process

Process Metrics:
- Insights of process paradigm, software engineering
tasks, work product, or milestones
- Lead to long term process improvement

Product Metrics:
- Assesses the state of the project
- Track potential risks
- Uncover problem areas
- Adjust workflow or tasks
- Evaluate teams ability to control quality

7

Types of Measures

Direct Measures (internal attributes)
- Cost, effort, LOC, speed, memory

Indirect Measures (external attributes)
- Functionality, quality, complexity, efficiency, reliability,
maintainability

8

Size Oriented Metrics

• Size of the software produced
• Lines Of Code (LOC)
• 1000 Lines Of Code KLOC
• Effort measured in person months
• Errors/KLOC
• Defects/KLOC
• Cost/LOC
• Documentation Pages/KLOC
• LOC is programmer & language dependent

9

LOC Metrics

• Easy to use
• Easy to compute
• Can compute LOC of existing systems but cost and

requirements traceability may be lost
• Language & programmer dependent

10

Function Oriented Metrics

• Function Point Analysis [Albrecht ’79, ’83]
• International Function Point Users Group (IFPUG)
• Indirect measure
• Derived using empirical relationships based on countable

(direct) measures of the software system (domain and
requirements)

11

Compute Function Points

• FP = Total Count * [0.65 + 0.01*Sum(Fi)]

• Total count is all the counts times a weighting factor that is
determined for each organization via empirical data

• Fi (i=1 to 14) are complexity adjustment values

12

Complexity Metrics

• LOC - a function of complexity
• Language and programmer dependent
• Halstead’s Software Science (entropy measures)

– n1 - number of distinct operators
– n2 - number of distinct operands
– N1 - total number of operators
– N2 - total number of operands

13

Example

if (k < 2)
{
if (k > 3)
x = x*k;
}

• Distinct operators: if () { } > < = * ;
• Distinct operands: k 2 3 x
• n1 = 10
• n2 = 4
• N1 = 13
• N2 = 7

14

Halstead’s Metrics

• Amenable to experimental verification [1970s]
• Length: N = N1 + N2
• Vocabulary: n = n1 + n2
• Estimated length: Ñ = n1 log2 n1 + n2 log2 n2

- Close estimate of length for well structured programs
• Purity ratio: PR = Ñ / N

15

Program Complexity

• Volume: V = N log2 n
- Number of bits to provide a unique designator for
each of the n items in the program vocabulary.

• Program effort: E=V/L
- L = V*/V
- V* is the volume of most compact design
implementation
- This is a good measure of program understandability

16

McCabe’s Complexity Measures

• McCabe’s metrics are based on a control flow representation
of the program.

• A program graph is used to depict control flow.
• Nodes represent processing tasks (one or more code

statements).
• Edges represent control flow between nodes.

17

Flow Graph Notation

Sequence
While

If-then-else
Repeat-until

18

Cyclomatic Complexity

• Set of independent paths through the graph (basis set)

• V(G) = E – N + 2
- E is the number of flow graph edges
- N is the number of nodes

• V(G) = P + 1
- P is the number of predicate nodes

19

Example

i = 0;
while (i<n-1) do

j = i + 1;
while (j<n) do

if A[i]<A[j] then
swap(A[i], A[j]);

end do;
i=i+1;

end do;

20

Flow Graph

21

Computing V(G)

• V(G) = 9 – 7 + 2 = 4
• V(G) = 3 + 1 = 4
• Basis Set

- 1, 7
- 1, 2, 6, 1, 7
- 1, 2, 3, 4, 5, 2, 6, 1, 7
- 1, 2, 3, 5, 2, 6, 1, 7

22

Meaning

• V(G) is the number of (enclosed) regions/areas of the
planar graph

• Number of regions increases with the number of decision
paths and loops.

• A quantitative measure of testing difficulty and an
indication of ultimate reliability

• Experimental data shows value of V(G) should be no
more then 10. Testing is very difficulty above this value.

23

McClure’s Complexity Metric

• Complexity = C + V
- C is the number of comparisons in a module
- V is the number of control variables referenced in
the module

• Similar to McCabe’s but with regard to control variables.

24

High level Design Metrics

• Structural Complexity
• Data Complexity
• System Complexity
• Card & Glass ’80
• Structural Complexity S(i) of a module i.

- S(i) = fout
2(i)

- Fan out is the number of modules immediately
subordinate (directly invoked).

25

Design Metrics

• Data Complexity D(i)
- D(i) = v(i) / [fout(i) +1]
- v(i) is the number of inputs and outputs passed to
and from i.

• System Complexity C(i)
- C(i) = S(i) + D(i)
- As each increases the overall complexity of the
architecture increases.

26

System Complexity Metric

• Another metric:
- length(i) * [fin(i) + fout(i)]2

- Length is LOC
- Fan in is the number of modules that invoke i.

• Graph based:
- Nodes + edges
- Modules + lines of control
- Depth of tree, arc to node ratio

27

Component Level Metrics

• Cohesion (internal interaction)
• Coupling (external interaction)
• Complexity of program flow
• Cohesion

28

Coupling

• Data and control flow
- di - input data parameters
- ci - input control parameters
- do - output data parameters
- co - output control parameters

• Global
- gd - global variables for data
- gc - global variables for control

• Environmental
- w - fan in number of modules called
- r - fan out number modules that call module

29

Metrics for Coupling

Mc = k/m, k =1

m = di + aci + do + bco + gd + cgc + w + r
a, b, c, k can be adjusted based on actual data

30

Quality Model

31

Metrics and Software Quality

FURPS
• Functionality - features of system
• Usability - aesthesis, documentation
• Reliability - frequency of failure, security
• Performance - speed, throughput
• Supportability - maintainability

32

Measures of Software Quality

• Correctness
- Defects/KLOC
- Defect is a verified lack of conformance to requirements
- Failures/hours of operation

• Maintainability
- Mean time to change
- Change request to new version (Analyze, design etc)
- Cost to correct

• Integrity
- Fault tolerance, security & threats

• Usability
- Training time, skill level necessary to use, Increase in productivity,
subjective questionnaire or controlled experiment

33

Metrics for the Object Oriented

• Chidamber & Kemerer ’94 TSE 20(6)
• Metrics specifically designed to address object oriented

software
• Class oriented metrics
• Direct measures

34

Class Size

• CS
- Total number of operations (inherited, private,
public)
- Number of attributes (inherited, private, public)

• May be an indication of too much responsibility for
a class.

35

Number of Operations Overridden

• NOO
• A large number for NOO indicates possible

problems with the design.
• Poor abstraction in inheritance hierarchy.

36

Number of Operations Added

• NOA
• The number of operations added by a subclass.
• As operations are added it is farther away from super

class.
• As depth increases NOA should decrease.

37

Specialization Index

• SI = [NOO * L] / Mtotal
• L is the level in class hierarchy.
• Mtotal is the total number of methods.
• Higher values indicate class in hierarchy that does

not conform to the abstraction.

38

Method Inheritance Factor

• Mi (Ci) is the number of methods inherited and not overridden
in Ci

• Ma (Ci) is the number of methods that can be invoked with Ci
• Md (Ci) is the number of methods declared in Ci

39

Method Inheritance Factor

• Ma (Ci) = Md (Ci) + Mi (Ci)
• All that can be invoked = new or overloaded + things inherited

• MIF is [0,1]
• MIF near 1 means little specialization
• MIF near 0 means large change

40

Coupling Factor

• is_client(x,y) = 1 if a relationship exists between the client
class and the server class. 0 otherwise.

• (TC2 – TC) is the total number of relationships possible
(Total Classes2 – diagonal).

• CF is [0,1] with 1 meaning high coupling.

41

Using Metrics

• The Process
- Select appropriate metrics for problem
- Utilized metrics on problem
- Assessment and feedback

• Formulate
• Collect
• Analysis
• Interpretation
• Feedback

42

Úkoly

• Pro svůj projekt navrhněte (vyberte) 3 různé metriky a
okomentujte jejich význam.

