

Lesson 3 - Cloud infrastructure – storage and data repositories

Milan Brož Software engineer Storage engineering

Storage data center elements
Layers
Data protection
Virtualization
Distributed storage
Security
Performance
Management and API

Storage

- Capacity
- Availability, Reliability
- Data integrity, Redundancy
- Performance
- Scalability
- Security

Manageability

=> Cost

Software Defined Storage (SDS)

- "Comodity hardware with abstracted storage logic"
- Policy-based management of storage
- Virtualization

. . .

- Resource management
- Similar concept as Software Defined Network (SDN) Note: distributed storage is mostly about networking!
- Thin provisioning, deduplication, replication, snaphsots,

SDS definition differs among vendors!

Hardware and low-level storage protocols

- Physical storage
 - Rotational drives / hard disk drives (HDD)
 - Flash / SSD drives
 - Persistent Memory (byte-addressable!)
 - Tapes, magneto-optical drives, ...
- Block-oriented storage access protocols
 - "Small Computer System Interface" (SCSI), Serial Attached SCSI (SAS)
 - Serial ATA (SATA)
 - Fibre channel (FC) (not only fiber-optic)
 - InfiniBand (IB)

Storage connectivity through network

- Direct-Attached Storage (DAS)
 - local, host-attached
- Network-Attached Storage (NAS)
 - remote storage device
 - communication protocol
 - usually over IP-based network
 - high-level: NFS, CIFS, HTTP, ...
 - low-level: iSCSI (SCSI over IP), FC (point-to-point), Network Block Device (NBD)

Storage connectivity through network

- Storage Area Network (SAN)
 - private network
 - switched fabric
 - communication protocol
 - Fibre Channel
 - InfiniBand
 - FC over Ethernet (FCoE)

- Data integrity protection
 - random error detection (parity) / correction
- Erasure codes Forward Error Correction (FEC)
 - Redundancy
 - RAID (Redundant Array of Independent Disks)
 - Erasure coding in distributed storage
- Backup and disaster recovery
 - "RAID is not a backup!"
 - File corruption, bugs (disk, controller, OS, application, ...)
 - Admin error, malware
 - Catastrophic failure (datacentre fire)
 - Offline and off-site backup replica

Common non-RAID and RAID disk configurations

- **JBOD** "Just a Bunch of Disks" (collection of disks, no redundacy)
- **RAID-0** striping (for performance, no redundancy, no parity)
- **RAID-1** mirroring (no parity)
- **RAID-5** block-level striping + distributed parity (XOR)
- **RAID-6** block-level striping + double distributed parity
- **RAID-10** nested RAID example (1+0: striping over mirrored drives)
- **RAIDZ** (in ZFS) similar to RAID-5, dynamic stripes, self-healing
- MAID (Massive Array of Idle Disks) "Write once, read occasionally"
- Degraded mode
 - RAID-5 (RAID-6 soon): large drives reconstruction time, fail during rebuild
- Hardware RAID vs software RAID vs "fake RAID" (processing in fw/driver)

RAID-5 schema + example of disk fail ("erasure")

- Data protection is trade-off
 - Storage overhead
 - Reconstruction cost
 - Reliability

. . .

- Still active research ...
 - From simple XOR (RAID) to Galois Field arithmetic GF(2^x)
 - Reed-Solomon codes, Pyramid codes
 - Bit-Matrix codes

Erasure coding – Data protection

Erasure codes trade-off and efficient solution

- Storage pool
 - set of disks, blocks, ... => allocatable area for data
- Pre-allocated storage
 - partition table, logical volume in Logical Volume Manager (LVM)
- On-demand allocated storage
 - Thin provisioning (only blocks in use are allocated)
 - Flexible allocation
 - Used in snapshots
 - Possible over-allocation (sharing "unallocated" space)

Volume manager – Virtualization

Storage Pool – example for Linux Logical Volume Manager (LVM2)

QCow2 image format – allocation principles (pre-allocated vs on-demand)

Distributed object store or network file-system

- Transparency
 - Access (same as local), Location (any node), Failure (self-healing)
- Backend for Cloud services
- Examples
 - Ceph, GlusterFS (Red Hat)
 - HDFS Hadoop File-System (Apache)
 - Windows Distributed File-System (Microsoft)
 - GFS (Google)
 - Isilon (EMC²)

CEPH – Distributed storage

- CEPH principles
 - block device (RBD)
 - CephFS
 - object store
 - libRADOS
 - CRUSH
 - Placement group
 - OSD

GlusterFS – Distributed storage

Example of access of **GlusterFS** resources

Deduplication / Compression

- Deduplication
 - · avoid to store repeated data
 - file or block level
 - space-efficient, stateless mode
 - deduplication performance
 - data corruption amplification
- Compression
 - more generic algorithms
 - special case: zeroed blocks

- Snapshot of storage in specific time
 - implicit deduplication
 - Allows quick revert to older state (recovery)
- Principle of writable snapshots with read-only origin

Snapshots

• Principle of snapshot with writable origin

- Copy on Write (COW) principle
 - delayed copy to snapshot (before origin write)
 - write to origin => need to copy the changed block first

Template

- Application of deduplication + snapshots (+ thin provisioning)
- Virtual machine template
 - base operating system
 - common configuration (networking, firewall, ...)
 - common applications (webservers, user packages, ...)
- One base image, only changes are stored
- Application containers + template
 - used in Docker

- Security policies
- Confidentiality
 - Storage encryption and data connection encryption
 - Key management
- Authentication
- Integrity (in cryptography sense authenticated encryption)
- Access control, permissions
- Secure data disposal / destruction
- Audit

...

Adding security later in game usually does not work :-)

... common mistake in storage engineering

- Tiered storage
 - Several layers of storage in one chain
 - Different performace, availability, recovery requirements
 - Cache
- Multi-path (also High Availability)
 - storage multipath
 - network connection (link bonding)
- Virtualization of drivers
 - virtio, pass-through device

- High availability (HA) assuring access to resources (data)
 - Service-level agreement (SLA)
 - common 9s levels

HA clusters

- several types of clusters
- cluster resource access
 - on-demand
 - active/passive
 - active/active
- resource locking / pseudolocking (shared storage access / SANLock)
- load-balancing

UPTIME (%)	DOWNTIME (%)	DOWNTIME PER YEAR	DOWNTIME PER WEEK
98	2	7.3 days	3 hr 22 minutes
99	1	3.65 days	1 hr 41 minutes
99.8	0.2	17 hr 31 minutes	20 minutes 10 sec
99.9	0.1	8 hr 45 minutes	10 minutes 5 sec
99.99	0.01	52.5 minutes	1 minute
99.999	0.001	5.25 minutes	6 sec
99.9999	0.0001	31.5 sec	0.6 sec

Cloud Storage API

- Open / proprietary API (Application Program Interface)
 - possible vendor lock-in
- Multitenancy
- Cloud network access
 - RESTful object-oriented storage
 - JSON / XML
- Example of integration OpenStack & CEPH

OpenStack & CEPH – Storage API

Questions?

