
PV204 Security technologies

Hardware Security Modules (HSM), PKCS#11

Petr Švenda svenda@fi.muni.cz

Faculty of Informatics, Masaryk University

mailto:svenda@fi.muni.cz
mailto:svenda@fi.muni.cz

Team projects

• Please refer to PV204_Projects_2016.ppt

| PV204: Hardware Security Modules

Homework 2 – typical issues

• Missing protection of OwnerPIN.update() method [major]

– If not protected, an attacker can set own PIN value and use signature

functionality after

• New keypair is generated for every signature call [major]

– Does not make sense in most scenarios (changing key)

– Makes signature method very slow

• Missing public key export [medium]

– Not possible to verify created signature

• Unused code was not removed [medium]

– Requirement, unclear if you understand what is relevant to keep

• System.out.print() called [minor]

– Will not compile&convert for real cards

• Signature.getInstance() called for every signature [minor]

– Slow, possibility to exhaust memory (if no Garbage Collection)

| PV204: Hardware Security Modules

Overview

• Usage scenarios for HSMs

• Available hardware, security certifications

• Available security APIs (PKCS#11…)

• Known API-level attacks

| PV204: Hardware Security Modules

Motivation usage scenarios

• Protection against trusted insiders

– bank PIN processor

• Device with high impact of compromise

– Private key of root certification authority

• Device in untrusted environment (ATM, PoS)

• DRM application (paid satellite TV)

• Smart grids (privacy of users)

• Intelligent transport systems…

| PV204: Hardware Security Modules

HARDWARE SECURITY MODULE

Hardware Security Module

| PV204: Hardware Security Modules

Hardware Security Module - definition

• HSM is trusted hardware element

– Contains own physical and logical protection

– May provide increased performance (compared to CPU)

• Attached to or put inside PC/server/network box

• Provides in-device:

– Secure generation (and entry)

– Secure storage (and backup)

– Secure use (cryptographic algorithms)

• Should never export sensitive data in plaintext

– Especially keys

 | PV204: Hardware Security Modules

Many HSM forms possible

• Stand-alone Ethernet boxes (1U/2U)

• PCI cards

• Serial/USB tokens

• SmartCards, TPMs…

• Note: we will focus on more powerful

devices (smart cards already

covered)

| PV204: Hardware Security Modules

https://www.thales-esecurity.com/products-and-services/products-and-services/hardware-security-modules

Hardware Security Module - specification

• Common functions

– Generate functions (generate new key)

– Load functions (import key, plain/wrapped by other key)

– Use key functions (various cryptographic algorithms)

– Export key functions (wrapping)

– Access control functions (public, login user, login admin)

– Destroy secrets functions

• Possibility to write custom “plugins”

– Custom code running inside HSM

– (usually invalidates certification)

| PV204: Hardware Security Modules

Hardware Security Module - protection

• Protections against physical attacks (tamper)

– Invasive, semi-invasive and non-invasive attacks

• Protection against logical attacks

– API-level attacks, Fuzzing…

• Preventive measures

– Statistical testing of random number generator

– Self-testing of cryptographic engines (encrypt twice, KAT)

– Firmware integrity checks

– Periodic reset of device (e.g., every 24 hour)

– …

| PV204: Hardware Security Modules

HSM – tamper security

• Protection epoxy

• Wiring mesh

• Temperature sensors

• Light sensors

• Variations in power supply

• Erasure of memory (write 0/random)

– After tamper detection to mitigate data remanence

• …

| PV204: Hardware Security Modules

Which one is tamper resistance,

evidence, detection and/or reaction?

www.techbriefs.com

HSM – logical security

• Access control with limited/delayed tries

– < 1:1000 000 probability of random guess of password

– < 1:100 000 probability of unauthorized access in one

minute

• Integrity and authentication of firmware update

– Signed updates

• Logical separation of multiple users (memory)

– Additional protection logic for separate memory regions

• Audit trails

• …

| PV204: Hardware Security Modules

CERTIFICATIONS

| PV204: Hardware Security Modules

Certifications: NIST FIPS 140-2

• Requirements on hardware and software components of

security modules to be used by US government

– Verified under Cryptographic Module Validation Program (CMVP)

– Testing against a defined cryptographic module, provides a suite of

conformance tests to required security level

– List of validated devices

http://csrc.nist.gov/groups/STM/cmvp/validation.html

• Common levels for HSMs

– NIST FIPS 140-2 Level 1+2 – basic levels, tamper evidence

(broken shell, epoxy), role-based authentication (user/admin))

– NIST FIPS 140-2 Level 3 – addition of physical tamper-resistance,

identity-based authentication, separation of interfaces with different

sensitivity

| PV204: Hardware Security Modules

http://csrc.nist.gov/groups/STM/cmvp/validation.html

Certifications: NIST FIPS 140-2 (cont.)

• Common levels for HSMs (cont.)

– NIST FIPS 140-2 Level 4 + additional physical security

requirements, environmental attacks

– http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

– Only very few devices certified to FIPS 140-2 Level 4

• NIST FIPS 140-3 (2013, but still draft)

– Additional focus on software security and non-invasive

attacks

| PV204: Hardware Security Modules

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

NIST FIPS 140-2 and RNG

• Truly random number generators (TRNG)

– No approved FIPS 140-2 TRNG

• Pseudorandom number generators

– ANSI X9.31 Appendix A.2.4, 3DES/AES-based

• FIPS 140-2 requires testing of RNG

– Known-answer-tests (KAT), Diehard battery

| PV204: Hardware Security Modules

“Random” FIPS 140-2 example

• EXP9000 Hardware Security Module (07/2011)

– http://csrc.nist.gov/groups/STM/cmvp/documents/140-

1/140sp/140sp1577.pdf

– FIPS140-2, security level 3

– Approved algorithms

– Non approved algorithms

– Roles and authentication

– Critical Security Parameters (CSP)

– Physical security mechanisms

– …

| PV204: Hardware Security Modules

http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1577.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1577.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1577.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1577.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1577.pdf

Certifications: Common Criteria EAL 4-5+

• CC does not directly measure the security of the

system/device itself

– only states level on which the system/device was tested

– and against what Security Target

• To achieve particular level, system must meet assurance

requirements

– Documentation, design analysis, functional/penetration testing

• CC certifies that system followed certain rules when

implementing target goals

– Broader than FIPS 140-2

| PV204: Hardware Security Modules

Certifications: Common Criteria (cont.)

• Common levels for HSMs

– EAL4: Methodically Designed, Tested and Reviewed

– EAL5: Semi-formally Designed and Tested

• Protection profiles

– Specifies generic security evaluation criteria to

substantiate vendors' claims (more technical)

– Crypto Module Protection Profile

– https://www.bsi.bund.de/cae/servlet/contentblob/480256/p

ublicationFile/29291/pp0045b_pdf.pdf

• + means “augmented” version (current version +

additional requirements, e.g., EAL4+)

 | PV204: Hardware Security Modules

https://www.bsi.bund.de/cae/servlet/contentblob/480256/publicationFile/29291/pp0045b_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/480256/publicationFile/29291/pp0045b_pdf.pdf

Certifications: PCI HSM version 1,2

• PCI HSM v1 (2009), v2 (2012)
– https://www.pcisecuritystandards.org/security_standards/documents.php

• Focused on area of payment transactions

– Payment terminals, backend HSMs…

– Payment transaction processing

– Cardholder authentication

– Card issues procedure

• Set of logical and physical requirements relevant to

payment industry

– Closer to NIST FIPS 140-2 then to CC (more concrete requirements)

| PV204: Hardware Security Modules

https://www.pcisecuritystandards.org/security_standards/documents.php
https://www.pcisecuritystandards.org/security_standards/documents.php

Cost of certification

• Certification is usually done by commercial

“independent” laboratories

– Laboratories are certified by governing body

– Quality and price differ

– Usually payed for by device manufacturer

• Certification pre-study

– Verify if product is ready for certification

• Full certification

– Checklist if all required procedures were followed

| PV204: Hardware Security Modules

Cost of CC EAL (US GAO, 2006)

| PV204: Hardware Security Modules

Be aware what is actually certified

• Certified != secure

– Satisfies defined criteria, producer claims are verified to be valid

• Usually certified bundle of hardware and software

– Concrete underlying hardware

– Concrete version of firmware, OS and pre-loaded application

• Certification usually invalidated when:

– New hardware revision used (less common)

– New version of firmware, OS, application (common)

– Any customization, e.g., user firmware module (very common)

• Pragmatic result

– I‟m using product that was certified at some point in time

| PV204: Hardware Security Modules

How is certified product used?

• Trade-off between security functionality and required data

centre operations

• Certification FIPS 140-2

– users usually turn FIPS mode off (want use additional functionality)

• “Almost” FIPS 140-2 mode

– Everything FIPS except what user added (custom module)

| PV204: Hardware Security Modules

HSM PERFORMANCE

| PV204: Hardware Security Modules

HSM – performance I.

• Limited independent public information available

– Claim: “up to 9000 RSA-1024b operations / second”

• But…

– Real operations are not just raw crypto (formatting of

messages…)

– Longer key length may be needed (RSA-2048b)

– Internal vs. external speed (data in/out excluded)

– Measurements in “optimal” situations (single pre-

prepared key, large data blocks…)

– …

| PV204: Hardware Security Modules

HSM – performance II.

• F. Demaertelaere (2010)

– https://handouts.secappdev.org/handouts/2010/Filip%20Demaertel

aere/HSM.pdf

• RSA 1024 bit private key operation: 100 – 7000 ops/sec

• ECC 160 bit ECDSA signatures: 250 – 2500 ops/sec

• 3DES: 2 - 8 Mbytes/sec

• AES: 6 - 40 Mbytes/sec (256 bit key)

• No significant breakthrough in technology since 2010

• Higher throughput achieved by multiple HSMs

| PV204: Hardware Security Modules

https://handouts.secappdev.org/handouts/2010/Filip Demaertelaere/HSM.pdf
https://handouts.secappdev.org/handouts/2010/Filip Demaertelaere/HSM.pdf
https://handouts.secappdev.org/handouts/2010/Filip Demaertelaere/HSM.pdf

HSM - load balancing, failover

• HSMs often used in business critical scenarios

– Authorization of payment transaction

– TLS accelerator for internet banking

– …

• Redundancy and load-balancing required

• Single HSM is not enough

– At least two in production for failover

– At least one or two for development and test

| PV204: Hardware Security Modules

STEPS OF CRYPTO OPERATION

Hardware Security Module

| PV204: Hardware Security Modules

Steps of cryptographic operation

1. Transfer input data

2. Transfer wrapped key in

3. Initialize unwrap engine

4. Unwrap data/key (decrypt/verify)

5. Initialize key object with key value

6. Initialize cryptographic engine with key

7. Start, execute and finalize crypto operation

8. Initialize wrap engine

9. Wrap data/key (encrypt/sign)

10. Erase key(s)/engine(s)

11. Transfer output data

12. Transfer wrapped key out
| PV204: Hardware Security Modules

S1: One user, few keys

• No sharing, all engines fully prepared

| PV204: Hardware Security Modules

S2: One user, many keys

• No sharing, frequent crypto context change

| PV204: Hardware Security Modules

S3: Few users, few keys

• Device is shared isolation of users

| PV204: Hardware Security Modules

S4:Few users, many keys

• Limited sharing, frequent crypto context change

| PV204: Hardware Security Modules

S5: Many users, many keys

• High sharing, frequent crypto context change

| PV204: Hardware Security Modules

HSM IN CLOUD

| PV204: Hardware Security Modules

Security topics in cloud environment

1. Move of legacy application into cloud

– Previously used locally connected HSMs

2. Protection of messages exchanged between multiple

cloud-based applications

– Key exchange of used key without pre-distribution?

3. Volume encryption in cloud

– Encrypted block mounted after application request (e.g., Amazon‟s

Elastic Block Storage)

4. Encrypted databases

– Block encryption of database storage, encryption of rows/cells

5. Cryptography as a Service

– Not only key management, also other cryptographic functionality

| PV204: Hardware Security Modules

Use case: AWS Key Management Service

• AWS Key Management Service Cryptographic

Details, M. Campagna (2015)

– https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-

Details.pdf

• Centralized key management

– Used by cloud-based applications

– Used by any client application

– Replication of wrapping keys into HSMs in different

datacenters

| PV204: Hardware Security Modules

https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

Usage scenario: envelope encryption

• Protected message exchange between multiple (cloud-

based) application

1. Random key generated in one application

2. Key protected (wrap) using trusted element (HSM)

3. Wrapped key appended to message

4. Key unwrapped in second application (via HSM)

| PV204: Hardware Security Modules

h
tt

p
s
:/
/d

0
.a

w
s
s
ta

ti
c
.c

o
m

/w
h
it
e
p
a
p
e
rs

/K
M

S
-C

ry
p

to
g
ra

p
h
ic

-D
e
ta

ils
.p

d
f

h
tt

p
s
:/
/d

0
.a

w
s
s
ta

ti
c
.c

o
m

/w
h
it
e
p
a
p
e
rs

/K
M

S
-C

ry
p

to
g
ra

p
h
ic

-D
e
ta

ils
.p

d
f

| PV204: Hardware Security Modules

What is difference to

PGP/S-MIME?

Who is trusted?

• KMS Service to wrap envelope keys properly

• KMS Service not to leak wrapping key

• Cloud operator not to read unwrapped keys from

memory

| PV204: Hardware Security Modules

Use case: Amazon AWS CloudHSM

• Amazon‟s AWS CloudHSM

– Based on SafeNet‟s Luna HSM

– Only few users can share one HSM

– => High initial cost (~$5000 + $1.88 per hour)

• Note: significantly different service from AWS KMS

– “Whole” HSM is available to single user/application, not

only key (un)wrapping functionality

– Suitable for legacy apps, compliancy requirements

| PV204: Hardware Security Modules

Use case: Amazon AWS CloudHSM

| PV204: Hardware Security Modules

CRYPTOGRAPHY AS A SERVICE

| PV204: Hardware Security Modules

Offloading security operations…

WS API: JSON

| PV204: Hardware Security Modules

… into secured environment

How to import key(s) securely?

Which hardware platform to use?

High number of clients?

| PV204: Hardware Security Modules

Cryptography as a Service (CaaS)

| PV204: Hardware Security Modules

Requirements – client view

• Untrusted CaaS provider (handling secrets)

• Secure import of app‟s secrets - enrollment

• Client<->CaaS communication security

– Confidentiality/integrity of input and output data

– Authentication of input/output requests

• Key use control

– Use constraints – e.g., number of allowed ops

• Easy recovery from client-side compromise

| PV204: Hardware Security Modules

Requirements – CaaS provider view

• Massive scalability

– W.r.t. users, keys, transactions…

• Low latency of responses

• Robust audit trail of key usage

• Tolerance and recovery from failures

– hardware/software failures

• Easy to use API

– also easy to use securely

| PV204: Hardware Security Modules

CaaS - implementation issues

• Software-only CaaS more vulnerable to attacks

• Classic HSMs are not build for high-level of sharing

– Performance degradation due to frequent context

exchange

– Logical separation only to few entities (16-32)

– Physical separation on device-level

• If interested, read more at

– Architecture Considerations for Massively Parallel

Hardware Security Platform, D. Cvrcek, P. Svenda (2015)

http://crcs.cz/papers/space2015

| PV204: Hardware Security Modules

http://crcs.cz/papers/space2015
http://crcs.cz/papers/space2015
http://crcs.cz/papers/space2015

HSM SECURITY API

Hardware Security Module

| PV204: Hardware Security Modules

Application Programming Interfaces (API)

1. Proprietary API (legacy or custom functions)

2. Standardized API - but proprietary library required

(PKCS#11)

3. Cryptographic service providers – plugin into

standardized API (CNG, CSP…)

4. Standardized API - no proprietary component (PIV,

EMV CAP…)

| PV204: Hardware Security Modules

PKCS#11, (PKCS#15), ISO/IEC 7816-15

• Standards for API of cryptographic tokens

• PKCS#11

– http://www.rsa.com/rsalabs/node.asp?id=2133

– software library on PC, rather low level functions

– widely used, TrueCrypt, Mozilla FF/TB, OpenSSL,

OpenVPN…

• PKCS#15

– http://www.rsa.com/rsalabs/node.asp?id=2141

– both hardware and software-only tokens, identity cards…

– superseded by ISO/IEC 7816-15 standard

| PV204: Hardware Security Modules

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2141
http://www.rsa.com/rsalabs/node.asp?id=2141

| PV204: Hardware Security Modules

PKCS#11

• Standardized interface of security-related functions
– vendor-specific library in OS, often paid

– communication library->card proprietary interface

• Functionality cover
– slot and token management

– session management

– management of objects in smartcard memory

– encryption/decryption functions

– message digest

– creation/verification of digital signature

– random number generation

– PIN management

• Secure channel not possible!
– developer can control only App PKCS#11 lib

User Application

Vendor library

Smartcard

PKCS#11 interface

proprietary interface

| PV204: Hardware Security Modules

PKCS#11 library

• API defined in PKCS#11 specification

– http://www.rsa.com/rsalabs/node.asp?id=2133

– functions with prefix „C_‟ (e.g., C_EncryptFinal())

– header files pkcs11.h and pkcs11_ft.h

• Usually in the form of dynamically linked library

– cryptoki.dll, opensc-pkcs11.dll, dkck232.dll…

– different filenames, same API functions (PKCS#11)

• Virtual token with storage in file possible

– suitable for easy testing (no need for hardware reader)

– Mozilla NSS, SoftHSM…

http://www.rsa.com/rsalabs/node.asp?id=2133

Play with HSM (without HSM )

• SoftHSM

– Software-only HSM

– Open-source implementation of cryptographic store

– Botan library for cryptographic operations

– https://www.opendnssec.org/softhsm/

– https://github.com/disig/SoftHSM2-for-Windows

• Utimaco HSM simulator

– https://hsm.utimaco.com/download/

– Simulator of physical HSM (with PKCS#11 and other

interfaces)

| PV204: Hardware Security Modules

https://www.opendnssec.org/softhsm/
https://www.opendnssec.org/softhsm/
https://sourceforge.net/projects/softhsm4windows/
https://sourceforge.net/projects/softhsm4windows/
https://sourceforge.net/projects/softhsm4windows/
https://sourceforge.net/projects/softhsm4windows/
https://sourceforge.net/projects/softhsm4windows/
https://sourceforge.net/projects/softhsm4windows/
https://hsm.utimaco.com/download/

| PV204: Hardware Security Modules

PKCS#11: Function prototypes

• GetProcAddress() returns untyped function pointer

• We need to cast this function pointer to known

function type

• Function types for PKCS#11 are in pkcs11_ft.h

typedef CK_RV CK_ENTRY (*FT_C_Encrypt)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG_PTR pulEncryptedDataLen
);

| PV204: Hardware Security Modules

PKCS#11: role model

• Functions for token initialization

– outside scope of the specification

– usually implemented (proprietary function call), but erase

all data on token

• Public part of token

– data accessible without login by PIN

• Private part of token

– data visible/accessible only when PIN is entered

| PV204: Hardware Security Modules

PKCS#11: Load and init library

int LoadAndInitLibrary(const char* path, HINSTANCE* phLib) {
 CK_RV status = CKR_OK;
 FT_C_Initialize fInitialize = NULL;

 if (phLib) {
 if ((*phLib = LoadLibrary(path)) != NULL) {
 // INITIALIZE LIBRARY
 fInitialize = NULL;
 if ((fInitialize = (FT_C_Initialize) GetProcAddress(*phLib, "C_Initialize")) != NULL) {
 (fInitialize)(NULL);
 }
 else status = GetLastError();
 }
 else status = GetLastError();
 }
 else status = -1;

 return status;
}

| PV204: Hardware Security Modules

PKCS#11: Finalize and unload library

int FinalizeAndCloseLibrary(HINSTANCE hLib) {
 CK_RV status = CKR_OK;
 FT_C_Finalize fFinalize;
 if (hLib != NULL) {
 // UNINITIALIZE LIBRARY
 fFinalize = NULL;
 if ((fFinalize = (FT_C_Finalize) GetProcAddress(hLib, "C_Finalize")) != NULL) {
 (fFinalize)(NULL);
 }

 FreeLibrary(hLib);
 }
 else status = -1;

 return status;
}

| PV204: Hardware Security Modules

PKCS#11: List tokens in system

• Slots in system are equivalent to readers

– C_GetSlotList

– C_GetSlotInfo

• Slot can be empty or with inserted token

– C_GetTokenInfo

| PV204: Hardware Security Modules

PKCS#11: Connect to token

• When slot with token is found

– C_OpenSession

– public session is opened

• Switch to private session by inserting PIN

– C_Login

– C_Logout

• C_CloseAllSessions

| PV204: Hardware Security Modules

PKCS#11: arguments lists

• Most of the PKCS#11 functions accept parameters as

CK_ATTRIBUTE[] array

• Every value is encoded in single CK_ATTRIBUTE

– CK_ATTRIBUTE_TYPE type

– CK_VOID_PTR pValue

– CK_ULONG ulValueLen

CK_CHAR label_public[] = {"Test1_public"}; //label of data object
CK_CHAR data_public[] = {“PV204 Public"};
CK_ATTRIBUTE dataTemplate_public[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &ptrue, sizeof(ptrue)},
 {CKA_LABEL, label_public, sizeof(label_public)},
 {CKA_VALUE, (CK_VOID_PTR) data_public, sizeof(data_public)},
 {CKA_PRIVATE, &pfalse, sizeof(pfalse)} // is NOT private object
};
BYTE numAttributes_public = 5;
C_CreateObject(hSession, dataTemplate_public, numAttributes_public, &hObject);

| PV204: Hardware Security Modules

PKCS#11: Store/search/get data

• Data created in public/private part of the token

– CKA_PRIVATE attribute

– C_CreateObject()

• User must be logged when creating/read private objects

• You must find target object

– attribute template, must be logged when searching private objects

– C_FindObjectsInit()

– C_FindObjects()

– C_FindObjectsFinal()

• Read data from object

– C_GetAttributeValue()

PKCS#11: Cryptographic functionality

• C_GetMechanismList to obtain supported

cryptographic mechanisms (algorithms)

• Many possible mechanisms defined (pkcs11t.h)

– CK_MECHANISM_TYPE, not all supported

– (compare to JavaCard API)

• C_Encrypt, C_Decrypt, C_Digest, C_Sign, C_Verify,

C_VerifyRecover, C_GenerateKey,

C_GenerateKeyPair, C_WrapKey, C_UnwrapKey,

C_DeriveKey, C_SeedRandom,

C_GenerateRandom…

| PV204: Hardware Security Modules

PKCS#11 - conclusions

• Wide support in existing applications

• Low-level API

• Difficult to start with

• Requires proprietary library by token manufacturer

• Complex standard with vague specification =>

security problems

– Hard to implement properly

| PV204: Hardware Security Modules

Microsoft CNG

• Cryptography API: Next Generation

• Long-term replacement for CryptoAPI
– http://msdn.microsoft.com/en-

us/library/windows/desktop/aa376210%28v=vs.85%29.aspx

• CNG API

– Cryptographic Primitives

– Key Storage and Retrieval

– Key Import and Export

– Data Protection API: Next Generation (CNG DPAPI)

| PV204: Hardware Security Modules

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

Cryptographic Service Providers (CSP)

• Generic framework with API for providers of

cryptographic functionality

– E.g., implementation of RSA

– Different underlying storage (software vs. hardware-based)

• Allows for runtime selection

– Connect to target provider (usually identification string)

– E.g., “Microsoft Base Cryptographic Provider v1.0”

• Microsoft CSPs
– http://msdn.microsoft.com/en-

us/library/windows/desktop/aa386983%28v=vs.85%29.aspx

• Java CSPs (JCE)

 | PV204: Hardware Security Modules

http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx

Chip Authentication Program (CAP)

• Usage of chip-based banking card for additional

operations

• Designed for backward compatibility

– existing cards can be used

– Separate on-card applet is preferred, but not required

• Designed by MasterCard as EMV-CAP

– https://en.wikipedia.org/wiki/Chip_Authentication_Program

– Adopted by Visa as Dynamic Passcode Authentication (DPA)

• Hardware CAP readers available

• Python software implementation

– http://sites.uclouvain.be/EMV-CAP/Application/

| PV204: Hardware Security Modules

https://en.wikipedia.org/wiki/Chip_Authentication_Program
https://en.wikipedia.org/wiki/Chip_Authentication_Program
https://en.wikipedia.org/wiki/Chip_Authentication_Program
http://sites.uclouvain.be/EMV-CAP/Application/
http://sites.uclouvain.be/EMV-CAP/Application/
http://sites.uclouvain.be/EMV-CAP/Application/
http://sites.uclouvain.be/EMV-CAP/Application/

CAP – supported commands

• Supported operations

– Code/identify

– Response

– Sign

• Variants:

– Mode 1: amount included in computed cryptogram

– Mode 2: no amount, used for logging into system

– Mode 2 + TDS

• With transaction data signing

• Multiple data fields of the transaction

| PV204: Hardware Security Modules

Custom API pro/cons

• Is design of own API better idea?

• Pros:
– derive api in line with use

– focused api, no overhead

– highly efficient implementation

• Cons:
– security holes by design

– high effort

– lost certification

| PV204: Hardware Security Modules

ATTACKS AGAINST API

| PV204: Hardware Security Modules

| PV204: Hardware Security Modules

Attacks against PKCS#11

• Lack of policy for function calls
– functions are too “low-level”

– sensitive objects can be manipulated directly

• Key binding attack (C_WrapKey)
– target key with double length is exported from SC

– encrypted by unknown master key

– attacker divide key into two parts and import them as wrapped key
for ECB mode

– perform brute-force search on each half separately

• Missing authentication of wrapped key
– attacker can create its own wrapping key

– and ask for export of unknown key under his own wrapping key

• Export of longer keys under shorter, …

RSA padding oracle attack

• Allows to recover content of encrypted message even

when key is unknown

• Based on 1 bit leakage from correct/incorrect padding

– Error status returned by device

• (cycle) mess with encrypted message, send to card,

inspect error

• 30 minutes with HSM, hours/days with smart card

• See more at

– http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-

Padding-Oracle-Attacks-on-RSA.html

| PV204: Hardware Security Modules

http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html
http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html

Tookan tool

• Formal verification with real device model
– probe PKCS#11 token with multiple function calls

– automatically create formal model for token

– run model checker and find attack

– try to execute attack against real token

• http://secgroup.dais.unive.it/projects/tookan/

| PV204: Hardware Security Modules

http://secgroup.dais.unive.it/projects/tookan/
http://secgroup.dais.unive.it/projects/tookan/

Conclusions

• Hardware Security Module is device build for

security and performance of cryptographic

operations

• Security certifications (but be aware of limits)

• Initially mostly for banking sector

– Now more widespread (TLS, key management..)

• Diverse APIs, potential logical attacks

| PV204: Hardware Security Modules

| PV204: Hardware Security Modules

