
Android: Beyond basics
Ing. David Vávra, Step Up Labs
MU Brno, March 2016

About me

● Internship at Google London
2011

● Graduated ČVUT FEL in 2012
● Master thesis: Settle Up
● 2012-2014 Inmite
● 2014-2016 Avast
● 2015 GDE for Android
● 2016 Step Up Labs

http://twitter.com/destil

http://google.com/+DavidVávra

https://medium.com/@david.vavra

http://twitter.com/destil
http://twitter.com/destil
http://google.com/+DavidV%C3%A1vra
http://google.com/+DavidV%C3%A1vra
https://medium.com/@david.vavra
https://medium.com/@david.vavra

Who is this talk for?

● Students with basic Java knowledge
● Android beginners
● Intermediate Android devs
● iOS and WP devs who are interested about Android

Agenda

● Motivation & basics recap
○ QA & Break

● Creating a Play Store-ready app
○ QA & Break

● Professional Android development
○ QA

www.slido.com
 #brno

Motivation & Basics Recap

Android is ...

● Linux-based OS for various devices
● Open-source (http://source.android.com)

http://source.android.com

Some history
● 2003, Android inc., digital cameras
● 2005, acquired by Google
● 2007 iPhone
● Sep 2008, the first Android phone

○ T-Mobile G1
● May 2010, Froyo (Android 2.2)
● Feb 2011, Honeycomb (Android 3.0)
● Oct 2011, Ice Cream Sandwich (4.0)
● July 2012, Jelly Bean (Android 4.1)
● July 2013, Jelly Bean (Android 4.3)
● Oct 2013, KitKat (Android 4.4)
● June 2014, Lollipop (Android 5.0)
● September 2015, Marshmallow (6.0)
● March 2016, N (6.1?)

Android today

Android today

● global marketshare 78.4%
● 1.5 million devices daily

activated
● tablet marketshare 36.5%
● >1.7 million apps in Play Store
● $1.8 billion from app sales in

2014

● Phones
● Tablets
● Android Wear
● Android TV
● Android Auto
● Project Tango
● Brillo
● (Google Glass)

Dark side of Android

● fragmentation, slow upgrades,
manufacturer changes

● Android users less likely to pay
● low-end devices
● lower quality apps in Google

Play, malware
● no Play Store in China
● API is getting restricted

Bright side of Android

● Tons of users!
● Almost instant publishing
● No yearly fees, no need for Mac
● Open-source, built to handle

various factors
● Developer freedom
● Support library & Google Play

services
● Support from Google
● Nexus & Motorola devices

Success Stories

● Urbandroid
● Tomáš Hubálek
● TappyTaps
● Inmite + Avast
● Ackee
● STRV
● and many more

Development options

● App-like mobile web
● Other language frameworks (Xamarin, Scala, Kotlin…)
● C-based frameworks (Unity)
● WebView-based frameworks (PhoneGap)
● Native

Native development

● programming in Java
○ Java 6 (<Kitkat)
○ Java 7 (KitKat)
○ Java 8 (N)

● native apps possible via NDK (C++)
● Android Studio (IntelliJ Idea)

○ Windows, Linux, Mac OS X

https://www.youtube.com/watch?v=Z98hXV9GmzY

https://www.youtube.com/watch?v=Z98hXV9GmzY
https://www.youtube.com/watch?v=Z98hXV9GmzY

● Gradle (Groovy, APKs, flavors, dependencies via Maven repos)
● AndroidManifest.xml (components, API level, permissions, …)
● Resources (bitmaps, vectors, state lists, strings, layouts)
● Activity (screen, contains Fragments and Views)
● Service (long-running background tasks, notification)
● Content provider (share data between apps)
● Broadcast receiver (system-wide or custom events)
● Intents (glue between components, data message)

Recap: Building blocks

Recap: Building the UI

● Activity contains Fragments
● Fragments contains Layouts from resources

○ LinearLayout, RelativeLayout, FrameLayout etc.

● Layouts contain Views
○ Button, TextView, EditText, RadioButton, WebView, …

● List of items uses Adapter pattern to bind data and recyclers views
○ ListView, GridView, Spinner, RecyclerView

Recap: Resources

● Resource qualifiers are powerful
○ drawable-mdpi
○ values-cs
○ layout-sw640dp
○ Drawable-hdpi-v11

● Density-independent units
○ dp
○ sp (for fonts)
○ never use px

QA & Break

www.slido.com
 #brno

Creating a Play Store-ready app

Fragments

● Created for supporting tablets
● Complicated API & lifecycle
● Allow for one-Activity app
● Sometimes required (ViewPager, TV apps)

Dialogs

● Do you really need to interrupt the user with dialog?
● Hard to style consistently
● They close on rotation
● Solution: https://github.com/avast/android-styled-dialogs

SimpleDialogFragment.createBuilder(this, getSupportFragmentManager())

.setTitle(R.string.title)

.setMessage(R.string.message)

.setPositiveButtonText(R.string.positive_button)

.setNegativeButtonText(R.string.negative_button)

.show();

https://github.com/avast/android-styled-dialogs

Asynchronous calls & rotation

It is tricky, because:

Once a configuration change (such as rotation) happens, Activity instance is
killed and recreated. If you have a reference to the old Activity (for example in
background thread), you create a memory leak (and bugs).

Hacks people do to workaround it:

● android:screenOrientation="portrait"

○ How about language, font, keyboard change? + Android N split mode

● android:configChanges="orientation"

○ Same layout in all configurations

http://developer.android.com/guide/topics/manifest/activity-element.html#config

Async options

● Java Thread
○ Know nothing about Android, lot of boilerplate

● AsyncTask
○ Simple API, widely (mis)used
○ Inconsistent behaviour on API levels
○ It’s not ties to the Activity lifecycle = creates memory leaks

● IntentService
○ Good option for “do something quick on the background”
○ Doesn’t tie well with the UI, lot of code to do that (properly).

● RxJava
○ Steep learning curve, but robust
○ More about that in last part

Loaders
● Designed to solve this problem
● Part of support library
● Tied with Activity lifecycle
● Good for “loading stuff for this screen”,

not for “do stuff after user clicked to
something”

● Doesn’t load stuff again after rotation,
uses cached stuff

https://medium.com/google-
developers/making-loading-data-on-android-
lifecycle-aware-897e12760832

public static class JsonAsyncTaskLoader extends

 AsyncTaskLoader<List<String>> {

 private List<String> mData;

 public JsonAsyncTaskLoader(Context context) {

 super(context);

 }

 @Override

 protected void onStartLoading() {

 if (mData != null) {

 deliverResult(mData);

 } else {

 forceLoad();

 }

 }

 @Override

 public List<String> loadInBackground() {

 // download and parse JSON

 List<String> data = new ArrayList<>();

 return data;

 }

 @Override

 public void deliverResult(List<String> data) {

 mData = data;

 super.deliverResult(data);

 }

}

https://medium.com/google-developers/making-loading-data-on-android-lifecycle-aware-897e12760832
https://medium.com/google-developers/making-loading-data-on-android-lifecycle-aware-897e12760832
https://medium.com/google-developers/making-loading-data-on-android-lifecycle-aware-897e12760832
https://medium.com/google-developers/making-loading-data-on-android-lifecycle-aware-897e12760832

Saving data

● SharedPreferences
○ simple key-value data like settings

● Sqlite database
○ structured data, a lot of boilerplate

● ContentProvider
○ wrapper around Sqlite (usually), use it only if you wish to share stuff with other apps

● Save files to filesystem
○ Good for files, lot of boilerplace for structured data, don’t rely on SD card

● Save data to the cloud
● ORMs

○ Reduce boilerplate, less flexible, OrmLite, GreenDAO

● Firebase, Realm - in the last part

Notifications

● Use NotificationCompat from support library (not Notification)
● Quite robust API which is also used for Android Wear and Android TV
● Uses Builder pattern:

NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this).

setSmallIcon(R.drawable.notification_icon).setContentTitle("My notification").

setContentText("Hello World!");

Intent resultIntent = new Intent(this, ResultActivity.class);

PendingIntent resultPendingIntent = PendingIntent.getActivity(context,

resultIntent, 0, PendingIntent.FLAG_UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);

NotificationManager mNotificationManager =

 (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);

mNotificationManager.notify(NOTIFICATION_ID, mBuilder.build());

Useful third-party libs

● Support library (Google)
○ Fragments, Notifications, ViewPager, DrawerLayout, Loaders, Material design, CardView,

Google Cast, RecyclerView, Leanback UI (for TVs), Custom Tabs, Percent layouts, …

● Picasso (Square) or Glide (Bumbtech)
○ Glide.with(this).load("http://goo.gl/gEgYUd").into(imageView);

● ButterKnife (Jake Wharton)
○ @Inject(R.id.text) TextView mText;

● Retrofit (Square)
○ Working with any REST API
○ Simple definition of the API with @annotations
○ does parsing and networking for you

● Crashlytics (Fabric)

http://goo.gl/gEgYUd

Material design
● Beautiful design which behaves like

“materials” = intuitive
● What materials? Mostly paper and ink
● Contains meaningful animations which

guide the user
● Brings elevation (done by shadow)
● Support design library does a lot for you
● All material icons are open-source
● Defines a color palette, usually bold colors
● Puts content first, your brand is done by

colors, not by logos
● Developers don’t need designers (that

much)
● More: https://www.google.

com/design/spec

https://www.google.com/design/spec
https://www.google.com/design/spec
https://www.google.com/design/spec

Useful UX patterns

● CardView
○ Better for more data in a list

● Left Drawer + “Hamburger” menu
○ If you have a bigger app with more separate features

● Floating Action Button (FAB)
○ For primary action in your app

● Tabs + ViewPager
○ For sections or categories

● Pull to refresh
○ For updating data

● Delete-undo
○ Goodbye “Are you sure to delete this?”

Permissions

● You need to list them in AndroidManifest.xml
● From Marshmallow you need to ask some of them in runtime
● User on Marshmallow can remove permissions also to old apps
● That’s why you should update to runtime permissions
● Don’t request something you don’t need (beware about libs)
● UX

○ Ask first without explanation
○ If user denies, explain why you need it
○ Ask for permissions when you need them, not in the beginning
○ Disable only parts of your app if you are missing permission

Publishing to Play Store

● $25 for life
● Release checklist

○ Test the app yourself
○ Prepare screenshots for all devices you support (phones, tablets, watches, TV)
○ Prepare one-liner and description at least in one language
○ Prepare high-res icon (512x512)
○ Prepare promotional graphic (1024x500)
○ Support e-mail (Google Group works well)
○ Publish APK to alpha or beta first

■ People can join either via link or you can invite specific testers
○ Once you are confident, publish to production
○ Watch ratings and stats
○ Remember that there are 1.7M apps in the store

QA & Break

www.slido.com
 #brno

Professional Android
development

Android architecture

● Why?
○ Big project structure gets messy and hard to debug
○ Activities and Android code mixed with app logic is hard to test. (Activity=ViewController)

● MVP
○ Model - database, network resources etc.
○ View - Activities/Fragments which only render stuff and listen for user input and call Presenter
○ Presenter

■ 1:1 class for each View.
■ Handles all communication between View and Model
■ Prepares data in minimal form for the View
■ It’s easily testable, doesn’t have any Android dependencies

https://labs.ribot.co.uk/android-application-architecture-8b6e34acda65

https://labs.ribot.co.uk/android-application-architecture-8b6e34acda65
https://labs.ribot.co.uk/android-application-architecture-8b6e34acda65

MVP & MVVM

http://tech.vg.no/2015/07/17/android-databinding-goodbye-presenter-hello-viewmodel/

http://tech.vg.no/2015/07/17/android-databinding-goodbye-presenter-hello-viewmodel/
http://tech.vg.no/2015/07/17/android-databinding-goodbye-presenter-hello-viewmodel/

Data binding
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:android="http://schemas.android.

com/apk/res/android">

 <data>

 <variable name="user" type="com.example.User"/>

 </data>

 <LinearLayout

 android:orientation="vertical"

 android:layout_width="match_parent"

 android:layout_height="match_parent">

 <TextView android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{user.firstName}"/>

 <TextView android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{user.lastName}"/>

 </LinearLayout>

</layout>

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 MainActivityBinding binding = DataBindingUtil.

setContentView(this, R.layout.main_activity);

 User user = new User("Test", "User");

 binding.setUser(user);

}

+ViewModel handling user events and display
logic

Testing

● Why?
○ Catch bugs as early as possible, TDD, regression, automation, piece of mind, architecture

● Why not?
○ Harder refactoring, slows down prototypes, find balance

● Unit/Integration testing
○ Local Unit Tests - no Android dependencies - JUnit4
○ Instrumentation Unit Tests - with Android dependencies - runs on device or emulator
○ Roboelectric - Mocks a lot of Android dependencies, can be run locally

● E2E testing
○ Expresso - UI testing within your app
○ UI Automator - UI testing within whole system
○ Monkey - Testing based on random input

Testing pyramid

JUnit4 & Roboelectric
@Test

public void

multiplicationOfZeroIntegersShouldReturnZero() {

 // MyClass is tested

 MyClass tester = new MyClass();

 // assert statements

 assertEquals("10 x 0 must be 0", 0,

tester.multiply(10, 0));

 assertEquals("0 x 10 must be 0", 0, tester.

multiply(0, 10));

 assertEquals("0 x 0 must be 0", 0, tester.

multiply(0, 0));

 }

@Test

public void

clickingButton_shouldChangeResultsViewText() throws

Exception {

 MyActivity activity = Robolectric.setupActivity

(MyActivity.class);

 Button button = (Button) activity.findViewById(R.

id.button);

 TextView results = (TextView) activity.

findViewById(R.id.results);

 button.performClick();

 assertThat(results.getText().toString())

.isEqualTo("Robolectric Rocks!");

 }

Espresso & UI Automator
@Test

public void changeText_sameActivity() {

 // Type text and then press the button.

 onView(withId(R.id.editTextUserInput))

 .perform(typeText(mStringToBetyped),

 closeSoftKeyboard());

 onView(withId(R.id.changeTextBt)).perform(click());

 // Check that the text was changed.

 onView(withId(R.id.textToBeChanged))

 .check(matches(withText(mStringToBetyped)));

}

public void testTwoPlusThreeEqualsFive() {

 mDevice.findObject(new UiSelector()

.packageName(CALC_PACKAGE).resourceId("two")).click();

 mDevice.findObject(new UiSelector() .

packageName(CALC_PACKAGE).resourceId("plus")).click();

 mDevice.findObject(new UiSelector()

.packageName(CALC_PACKAGE).resourceId("three")).click();

 mDevice.findObject(new UiSelector()

.packageName(CALC_PACKAGE).resourceId("equals")).click();

 // Verify the result = 5

 UiObject result = mDevice.findObject(By.res

(CALC_PACKAGE, "result"));

 assertEquals("5", result.getText());

}

Dependency injection
● Creates objects for you and handles

dependencies (constructor parameters) of
other objects

● You can just @Inject something anywhere
and don’t care how it was created and
what it needed for creation

● Most used library: Dagger 2
● Good for keeping @Singleton instances
● Injected objects can be easily mocked in

tests
● http://google.github.io/dagger/

public abstract class BaseActivity extends
Activity {
 @Inject Settings settings;

 @Override
 protected void onCreate(Bundle
savedInstanceState) {
 super.onCreate(savedInstanceState);
 App.getComponent().inject(this);
 }
}

http://google.github.io/dagger/
http://google.github.io/dagger/

Contest time

Google Play Services

● Automatically updated APIs from Google
● Google fights fragmentation
● APIs

○ Location
○ Maps
○ Activity recognition
○ Google Sign in
○ Google Drive
○ Admob
○ Analytics
○ Google Fit

JobScheduler
● Best way to schedule work for later
● More flexible than AlarmManager
● Backported via Google Play Services (GCM

Network Manager)
● Conditions for jobs: network -

metered/unmetered, charging state
● Persists across restarts
● Automatic retry with exponential backoff
● OneOff & Periodic

OneoffTask task = new OneoffTask.Builder()

 .setService(MyTaskService.class)

 .setTag(TASK_TAG_WIFI)

 .setExecutionWindow(0L, 3600L)

 .setRequiredNetwork(

 Task.NETWORK_STATE_UNMETERED)

 .build();

mGcmNetworkManager.schedule(task);

Animations

● View Animations
○ Older, only for Views, animations defined in xml, simple

● Property Animations
○ >Honecomb, general, can animate anything on any property
○ Duration, time interpolation, repeat count, behavior
○ button.animate().setDuration(1200).alpha(0.5f).x(250);

● Drawable animation
○ Frame by frame

● Drawing on Canvas
● OpenGL

RxJava
● Reactive programming - based on

Observer pattern
● Functional programming
● Helps with complex async calls
● Retrofit has Rx bindings
● Steep learning curve
● Android extensions - RxAndroid
● Building blocks - Observables and

Subscribers

api.login(new Callback<ResponseBody>() {

 @Override

 public void success(final ResponseBody body,

final Response response) {

 api.getUserStatus(new

Callback<UserStatus>() {

 @Override

 public void success(final UserStatus

status, final Response response) {

 // update UI according to

user state

 }

 …
//RxJava

eventAPI.login()

.flatMap(status -> api.getUserStatus())

.subscribe(onComplete, onError);

Realm
● Cross-platform database
● Replacement for Sqlite
● Fast and modern
● Works with objects
● https://realm.io/

public class Person extends RealmObject {

 private String name;

 private RealmList<Dog> dogs;

}

realm.beginTransaction();

Dog mydog = realm.createObject(Dog.class);

Person person = realm.createObject(Person.

class);

person.setName("Tim");

person.getDogs().add(mydog);

realm.commitTransaction();

https://realm.io/
https://realm.io/

Firebase
● JSON database on the server
● Realtime - keeps connection to the server

when you app is active
● Removes the need for backend for most

apps
● Handles synchronization
● Handles offline
● Handles authentication to Facebook,

Twitter, Google
● https://www.firebase.com/

1. // Create a connection to your Firebase database
2. Firebase ref = new Firebase("https://<YOUR-

FIREBASE-APP>.firebaseio.com");
3.
4. // Save data
5. ref.setValue("Alex Wolfe");
6.
7. // Listen for realtime changes
8. ref.addValueEventListener(new

ValueEventListener() {
9. @Override

10. public void onDataChange(DataSnapshot snap) {
11. System.out.println(snap.getName() + " -> " +

snap.getValue());
12. }
13. @Override public void onCancelled(FirebaseError

error) { }
14. });

https://www.firebase.com/
https://www.firebase.com/

Kotlin
● New language from JetBrains
● JVM-based, fully compatible with Java
● Full support in Android Studio
● Stable, concise, modern
● Null safe
● Lambdas and other functional stuff
● Extension functions

fun Fragment.toast(message: CharSequence,
duration: Int = Toast.LENGTH_SHORT) {
 Toast.makeText(getActivity(), message,
duration).show()
}

view.setOnClickListener { toast("Hello

world!") }

Proguard

● Why?
○ Smaller APK size
○ Harder decompilation
○ Staying in 65k method limit

 buildTypes {

 release {

 minifyEnabled true

 proguardFiles getDefaultProguardFile('proguard-android.txt'),

 'proguard-rules.pro'

 }

 }

Analytics

● Why?
○ Best decisions are backed by data
○ You can detect UX problems and prioritize features

● Google Analytics - free and robust, part of Google Play Services
● Automatically tracks Activities and time spent there
● Real-time view
● You can track events with data - clicks, user actions etc.
● Generates lot of graphs - like funnel which shows how your users go through

the app and where they leave

Final QA
This slides:
http://bit.ly/android-brno

http://twitter.com/destil

http://google.com/+DavidVávra

https://medium.com/@david.vavra

http://bit.ly/android-brno
http://bit.ly/android-brno
http://twitter.com/destil
http://twitter.com/destil
http://google.com/+DavidV%C3%A1vra
http://google.com/+DavidV%C3%A1vra
https://medium.com/@david.vavra
https://medium.com/@david.vavra

