
Man in the middle attacks 
demo

+ Reverse Engineering



Attacks on users - what they do, what their credentials are

Communication types:

● Browser + HTTP
● Browser + HTTPS
● Browser + HTTPS + HSTS (HTTP Strict Transport Security)
● App + HTTP/HTTPS
● App + certificate pinning



Simplest how-to 
1. You must earn the power of hacking by passing the steps with your own skills 

and knowledge
2. You must have two network adapters - either ethernet+WiFi, or a WiFi dongle
3. Download and install Burp, understand how Burp certificate works
4. Either set up Burp proxy (it's IP and host) to your phone's advanced WiFi 

settings 
Or setup transparent proxying via Iptables (on Linux):
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports 8080
iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-ports 443

And in Burp, listen on these ports on the interface of your WiFi adapter



Attacks on applications - functionality, structure, logic, security, keys..

● App + installed certificate
● Reverse Engineering
● MITM



Reverse Engineering
Apktool
http://ibotpeaches.github.io/Apktool/

A tool for Reverse Engineering resources nearly to their original form

● Layouts, colors, strings...
● Android Manifest
● Smali code - debuggable, better readable than byte code

Cmd command: apktool d app_name.apk

http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/


Reverse Engineering
Dex2jar

● Decompiles compiled Java classes to .jar files to nearly their original form
● Jar files can be opened in tools like Luyten

https://github.com/pxb1988/dex2jar

https://github.com/deathmarine/Luyten/releases

1. Unzip .apk file
2. sh dex2jar/d2j-dex2jar.sh unzipped_dir/classes.dex
3. Drag and drop created classes.jar to Luyten and read :)

https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
https://github.com/deathmarine/Luyten/releases
https://github.com/deathmarine/Luyten/releases


Reverse Engineering
Where to hide secret keys in Android apps?

Native code!!! 
Is not Java and is decompiled much harder :)


