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WHY NOW?

GPU!

Good data, good annotated data(ImageNet).

Some great simple ideas.

Most of the techniques are old 20-30 years.

99% is matrix multiplications.



NEURAL NETWORKS

Beginning in 50s and 60s.

Biologically inspired by brain and neurons.

Boom every ten years...

State of the art for multimedia

data processing!



PROBLEMS?



NEURON

Perceptron

Output is y=f (Wx+b)

f is activation function

Input x = [x0=1.0, x1, x2 ...., xn]

Weights W = [w0, w1, w1, ....., wn]



ACTIVATION FUNCTION

Step Function TanH Sigmoid



SIMPLE IMPLEMENTATION



NEURAL NETWORK



SIMPLE IMPLEMENTATION



PLAYGROUND.TENSORFLOW.ORG



OVERFITTING?



HOW TO LEARN WEIGHTS? #VERY SIMPLIFIED

Weights are learned with Backpropagation algorithm(gradient learning). 

Update weights(alpha is learning rate like 0.01):

Objective function for bin. Classification[0,1]: Binary Cross Entropy

Gradient for last layer:

You need to propagate the error through the network. 

"gradient points in the direction 

of the greatest rate of increase of 

the function, components are p. 

derivatives"



TRAINING

Monitor the objective function: It should decrease over time.

Play with learning rate alpha=[0.1, 0.001, 0.05, ...]

Train with mini batch of samples.

Normalize your data to <0,1>, ...



SOFTMAX LAYER

A softmax layer takes the activations and divides each of them by the sum of all 
activations, thereby forcing the outputs of the layer to take the form of probability 
distribution (sum to 1).



OVERFITTING



DROPOUT LAYER

Regularization technique.

Active only during training.

With some probability set output

of unit to zero.



GRADIENT PROBLEM

Vanishing gradient : gradients are smaller in every next layer

Exploding gradient : gradients are larger in every next layer

Result:

Unable to learn deeper model(lower layers)

Why?

Weights and activation functions squeeze gradients.

Understanding the difficulty of training deep feedforward neural networks [X.Glorot, 2010]

when backpropagating error



WHY NOW? SOLVING GP #2

Rectified Linear Unit(ReLU) as activation function.

Intelligent Initialization of Weights at beginning of training.

It doesn't solve the problem, It just minified the problem.

ReLU: f(x) = max(0,x)



HOW TO INITIALIZE WEIGHTS?

1. Random uniform from [-e, e]

2. Gaussian distribution

3. Xavier initialization

4. Pretraining with RBM models



AUTOENCODER

Non-Linear dimensionality reduction.

Encoder and Decoder part.

After training throw away Decoder part.

It can work better than PCA.

Training ends often in local optimum...

compression



Reducing the Dimensionality of Data with Neural 

Networks[Science, 2006, Hinton]

AUTOENCODER 
PRETRAINED
BY RBM

https://github.com/Cospel/rbm-ae-tf



AUTOENCODER VS PCA



AUTOENCODER VS PCA

Original Input 

Autoencoder

PCA



CONVOLUTIONAL NN

Stack of Convolution, Pooling, ReLU, Fully Connected Layers.

State of the art in computer vision.

Convolutional Layer: Weights Sharing, Local Connectivity

It is impractical to connect neurons to all neurons in the previous volume.



INPUT, CONV, POOLING, RELU LAYERS



LEARNED CNN FEATURES



POOLING LAYER

Subsampling the image.

Smaller outputs = faster learning



1. AlexNet 

2. VGG

3. ResNet

4. SqueezeNet

5. GoogleNet

6. ...

MANY CNN ARCHITECTURES

[ImageNet Classification with 

Deep Convolutional Neural 

Networks, 2012 G.Hinton, A. 

Krizhevsky]



TRANSFER LEARNING

1. Use existing Weights or entire NN to finetune on new(similar domain) data

2. Use CNN descriptors for algorithms as KNN, SVM, …

Many pretrained models(weights) are available to download on github:

VGG with face descriptors

Models for places

….



RECURRENT NN

Good for timeseries data, nlp, video sequences, ...

Backpropagation through time …

It has internal hidden state.(memory for sequence)



RECURRENT NN



SIMPLE IMPLEMENTATION



FRAMEWORKS



KERAS FEEDFORWARD NET



KERAS RECURRENT NET



KERAS CONVOLUTIONAL NETWORK



THANK YOU...


