
LAB		OF		SOFTWARE		ARCHITECTURES	
AND		INFORMATION		SYSTEMS	
	
FACULTY		OF		INFORMATICS	
MASARYK		UNIVERSITY,		BRNO	

ROADMAP		TO		SOFTWARE		QUALITY	

Barbora	Bühnová	
buhnova@fi.muni.cz	

	
PV260		COURSE	INTRODUCTION	

Outline	of	the	lecture	

• Course	introduction	
•  Course	motivation	and	goals	
•  Course	organization	
•  Our	team	

• Roadmap	to	quality	assurance	methods	
•  Define	quality	issues	
•  Prevent	quality	issues	
•  Detect	quality	issues	
•  Repair	quality	issues	
•  Keep	track	of	quality	issues	

• Choose	well,	plan	well	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Course	introduction	
•  Course	motivation	and	goals	
•  Course	organization	
•  Our	team	

• Roadmap	to	quality	assurance	methods	
•  Define	quality	issues	
•  Prevent	quality	issues	
•  Detect	quality	issues	
•  Repair	quality	issues	
•  Keep	track	of	quality	issues	

• Choose	well,	plan	well	

©	B.	Bühnová,	PV260	Software	Quality	

Course	motivation	and	goals	

			“People	forget	how	fast	you	did	a	job	–	but	they	remember		
		how	well	you	did	it”			–	some	guy	named	Howard	Newton	
	

• The	aim	of	the	course	is	to	help	the	students	to	
•  understand	activities	contributing	to	building	high-quality	software;	

•  develop	critical	thinking	and	be	able	to	identify	code	flaws	related	to	

reliability,	performance,	scalability,	maintainability	and	testability;	

•  be	able	to	refactor	existing	code	to	improve	different	quality	attributes;	

•  have	practical	experience	with	software	testing	and	related	tools.	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	lectures	

Lect	1.	Course	organization.	Roadmap	to	software	quality	engineering	methods.	

Lect	2.	Clean	Code	&	SOLID	principles.	Bad	code	smells	and	code	refactoring.	

Lect	3.	Software	measurement	and	metrics,	and	their	role	in	quality	improvement.	

Lect	4.	The	role	of	software	architecture.	

Lect	5.	Automated	testing	and	testability.	Continuous	integration.	

Lect	6.	Requirements	and	test	cases.	From	unit	testing	to	integration	testing.	

Lect	7.	Skills	and	competences	of	a	QA	engineer.	Quality	and	testing	in	agile.	

Lect	8.	Focus	on	quality	attributes	and	conflicts	between	them.	

Lect	9.	Performance	engineering	and	performance	testing.	

Lect	10.	Static	code	analysis	and	code	reviews.	

Lect	11.	Challenges	of	quality	management	in	cloud	applications.	

Lect	12.	Software	quality	management	process.	Course	summary.	

Colloquium	event	

©	B.	Bühnová,	PV260	Software	Quality	

Course	organization	

• Lectures	
•  Shared	by	us	and	experts	from	companies	
•  May	not	be	recorded	
•  Easter	between	Lecture	5	and	Lecture	6	
•  Final	colloquium	event	right	after	the	semester	

• Seminars	
•  Practical	assignments	on	computers	
•  Teamwork,	homework,	projects	
•  2	Java	groups	–	taught	by	LaSArIS	lab	members	
•  1	C#	group	–	taught	by	YSoft	experts	

©	B.	Bühnová,	PV260	Software	Quality	

Course	organization	

• Evaluation	
•  45	points	for	seminar	assignments	
•  10	seminar	bonus	points	
•  10	lecture	bonus	points	
•  35	points	for	final	colloquium	assessment,	consisting	of		
•  obligatory	attendance	at	the	final	colloquium	event	and		
•  final	written	test	

•  Minimum	of	70	points	for	passing	the	course	
	

• Colloquium	event	
•  On	May	23rd,	2016,	between	9-13h	
•  Discussion	groups	led	by	industrial	experts	
•  Student	presentations	of	outcomes	
• Written	test	(at	the	end	of	the	day,	or	on	a	separate	term)	

©	B.	Bühnová,	PV260	Software	Quality	

Our	team	

©	B.	Bühnová,	PV260	Software	Quality	

•  Ondřej	Krajíček	
•  Martin	Osovský	
•  Radim	Göth	
•  and	others	

•  Barbora	Bühnová	
•  Bruno	Rossi	
•  David	Gešvindr	
•  Stanislav	Chren	
•  Václav	Hála	

	

•  Jaromír	Skřivan	
•  Lukáš	Pitoňák	
•  Jakub	Papcun	
•  Jan	Svoboda	

•  Jan	Verner	
	

•  Jiří	Pokorný	
•  Pavel	Macík	
•  Martin	Večeřa	

Outline	of	the	lecture	

• Course	introduction	
•  Course	motivation	and	goals	
•  Course	organization	
•  Our	team	

• Roadmap	to	quality	assurance	methods	
•  Define	quality	issues	
•  Prevent	quality	issues	
•  Detect	quality	issues	
•  Repair	quality	issues	
•  Keep	track	of	quality	issues	

• Choose	well,	plan	well	

©	B.	Bühnová,	PV260	Software	Quality	

Quality	Assurance	(QA)	methods	

©	B.	Bühnová,	PV260	Software	Quality	

Coding best practices
Code conventions

Pair programming
Design inspections Code reviews

Fault tolerance mechanisms

Performance tuning

Test driven development

QA processes

Standards

Functional testing

Performance testing

Design patterns

SOLID principles

Clean Code

Usability testing
Security testing

Measurement and metrics CMMI, ITIL

Security tactics

V-model of testing

Technical debt management

Static code analysis

Roadmap	to	QA	methods	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of		
quality	issues	

Define		
quality	issues	

©	B.	Bühnová,	PV260	Software	Quality	

Define	quality	issues	

• Software	quality	is	commonly	
defined	as	the	capability	of	
a	software	product	to	conform	
to	requirements	[ISO/IEC	9001].	

• Requirements	engineering	

• Software	metrics	
•  ’You	cannot	manage	what	you	cannot	measure’	

• Quality	attributes	
•  Of	a	product,	process	and	resources	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of	
quality	issues	

Define		
quality	issues	

customer needs

What	"quality"	means	to	you?	
…	and	your	customer?	

																									…	and	your	manager?	

©	B.	Bühnová,	PV260	Software	Quality	

The	Software	Quality	Iceberg	

EXTERNAL	QUALITY	

INTERNAL	QUALITY	

Visible	/	Symptoms	

Invisible	/	Root	

usability	
accuracy	

cost	

performance	

reliability	

program	structure	

complexity	

coding	practices	

testability	

reusability	
maintainability	

flexibility	

understandability	

security	

te
st

in
g

in

sp
ec

ti
on

Inspiration	from	[5]	

m
an

u
al

 o
r

 a
u

to
m

at
ed

?
m

easu
rable or n

ot?

©	B.	Bühnová,	PV260	Software	Quality	

The	big	five	

• Along	the	course	we	will	focus	on:	
		
•  Maintainability	–	ease	of	change	(without	increased	technical	debt)	
•  Performance	–	response	time	and	efficiency	in	resource	utilization	
•  Reliability	–	probability	of	failure-free	operation	over	a	period	of	time	
•  Testability	–	degree	to	which	the	system	facilitates	testing	
•  Scalability	–	system’s	ability	to	handle	growing	work	load	

• Quality	attributes	studied	in	related	courses:	
		
•  Security	–	system’s	ability	to	protect	itself	from	attacks	
•  Usability	–	ease	of	system	use	and	learnability	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent	quality	issues	

• Coding	best	practices	
•  Clean	code,	SOLID	principles	
•  Design	patterns	
•  Pair	programming	

• Code	conventions	
•  Language	specif.	recommendations	

• Quality	assurance	processes	
•  V-model	of	testing	

• Standards	for	development	process	improvement	
•  CMMI	and	ITIL	reference	models	
•  ISO	9000,	ISO/IEC	25010	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of	
quality	issues	

Define		
quality	issues	

Detect	quality	issues	

• Testing	functional	requirements	
•  Manual	or	automated	

• Testing	non-functional	req.	
•  Performance,	usability,	security	
testing	

• Design	inspections	
•  Manual	inspections	of	design	artifacts	

• Code	reviews	
•  Manual	inspections	of	code	

• Automated	static	code	analysis	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of	
quality	issues	

Define		
quality	issues	

Roadmap	to	software	testing	

©	B.	Bühnová,	PV260	Software	Quality	

Inspired	from	[1]	

Test	cases	
Test	resources	

Test	plan	

Testing	
Strategy	

Unit	
Component	

Functional	
Test	

Backend	
Middleware	
Third	party	

System	and	
Integration	Test	

Functional	
Non-functional	
Regression	

Release	Test	

Usability	
Learnability	
Requirements	

Acceptance	
(User)	Test	

Application	
Infrastructure	

Post-production	
Tuning	

Requirements	

Acceptance	
Criteria	

Test	management	

Functional	testing	

Non-functional	testing	
Tuning	

Specify	 Design	 Prototype	 Configure	 Validate	 Deploy	 Maintain	D
ev

el
op

m
en

t	
Te

st
in
g	

En
d-
to

-E
nd

	V
ie
w
	

Implementation	Cycle	

Penetration	
Red	team	

Security	Test	

Response	time	
Stress	

Performance	Test	

Repair	quality	issues	

• Functional	issue	
•  Code	repair	

• Reliability	issue	
•  Fault	tolerance	mechanisms	

• Performance	issue	
•  Concurrency,	effective	resource	utilization,		
identify	and	remove	system	bottlenecks	

• Security	issue	
•  Identify	and	remove	system	vulnerabilities	(single	points	of	failure)	

• Maintainability	issue	
•  Refactoring	to	clean	code	principles,	to	design	patterns	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of	
quality	issues	

Define		
quality	issues	

Keep	track	of	quality	issues	

•  Issue	tracking	
•  Supports	the	management	of		
issues	reported	by	customers	

• Technical	debt	management	
•  Level	of	code	quality	degradation	
• Work	that	needs	to	be	done	before	
a	particular	job	can	be	considered	complete	or	proper	

• Configuration	management	
•  Version	management	and	release	management	
•  System	integration	

©	B.	Bühnová,	PV260	Software	Quality	

Prevent		
quality	issues	

Detect		
quality	issues	

Repair		
quality	issues	

Keep	track	of	
quality	issues	

Define		
quality	issues	

Roadmap	to	QA	methods	–	the	Big	Picture	

Prevent	quality	issues	
-	Coding	best	practices	
-	Code	conventions	
-	QA	processes	
-	Standards	

																			Detect	quality	issues	
																														(Non)Functional	testing	-																																																
																																								Design	inspections	-	
																																																			Code	reviews	-	
																																						Static	code	analysis	-	

Repair	quality	issues	
-	Reliability	tactics	
-	Performance	tactics	
-	Security	tactics	
-	Maintainability	tactics	

																																								Keep	track		
																												of	quality	issues	
																																																		Issue	tracking	-	
																				Technical	debt	management	-																		
																					Configuration	management	-	

Define	quality	issues	
-	Requirements	engineering	
-	Quality	attributes	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Course	introduction	
•  Course	motivation	and	goals	
•  Course	organization	
•  Our	team	

• Roadmap	to	quality	assurance	methods	
•  Define	quality	issues	
•  Prevent	quality	issues	
•  Detect	quality	issues	
•  Repair	quality	issues	
•  Keep	track	of	quality	issues	

• Choose	well,	plan	well	

©	B.	Bühnová,	PV260	Software	Quality	

Choose	well,	plan	well	

• Think	well	about	your	requirements	
and	the	cost	of	the	quality	

©	B.	Bühnová,	PV260	Software	Quality	

Choose	well	–	Combination	is	the	key	

©	B.	Bühnová,	PV260	Software	Quality	

From	[2,3],	see	also	RebelLabs	reports	[4]		

Plan	well	–	The	Power	of	Analogy	

• Airplane	Servicing	
•  Requires	regular	servicing	e.g.	every	100,000	miles.	
•  Takes	place	even	if	everything	seems	to	work	all	right,		
because	we	cannot	afford	a	failure.	

• Technical	Debt	Management	
•  Introduced	by	Ward	Cunningham	
•  Analogy	of	quality	degradation	with	financial	debt		
–	if	not	paid	off,	interests	increase.	One	can	get	into	trouble.	

• Sometimes	it	is	wise	to	“borrow	money”	
• When	one	expects	to	have	more	money	in	the	future	(start-up	company)	
• When	one	needs	to	act	fast	not	to	miss	a	market	opportunity	
• When	one	expects	money	devaluation	(e.g.	developers	will	become	
more	experienced,	it	will	be	easier	to	understand	user	needs)	

©	B.	Bühnová,	PV260	Software	Quality	

Can we quantify it?

Takeaways	

• Quality	assurance	(QA)	is	much	more	than	testing,	including	
many	different	methods	to	
•  prevent,	detect,	repair	and	keep	track	of	quality	issues	

• Combination	of	the	methods	is	the	key	to	successful	QA	
•  But	choose	well	and	plan	well,	not	all	methods	are	best	for	your	project!	

• Make	sure	you	understand	the	needs	of	your	customer	
•  Balance	both	internal	and	external	quality	attributes	for	both		
the	present	and	the	future	
	

Barbora	Bühnová,	FI	MU	Brno	
buhnova@fi.muni.cz	
www.fi.muni.cz/~buhnova	

	

contact me

thanks for listening

©	B.	Bühnová,	PV260	Software	Quality	

References	

•  [1]	Testing	You	Perform	When	You	Develop	a	Siebel	Application.	Available	online	at	
http://docs.oracle.com/cd/E14004_01/books/DevDep/Overview5.html	

•  [2]	Steve	McConnell.	Code	Complete:	A	Practical	Handbook	of	Software	
Construction,	Second	Edition.	Microsoft	Press,	June	2004.		

•  [3]	Kevin	Burke.	Why	code	review	beats	testing:	evidence	from	decades	of	
programming	research.	Available	online	at
https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/	

•  [4]	RebelLabs.	2013	Developer	Productivity	Report.	Available	online	at	
http://zeroturnaround.com/rebellabs/developer-productivity-report-2013-how-
engineering-tools-practices-impact-software-quality-delivery/	

•  [5]	Jonathan	Bloom.	Titanic	Dilemma:	The	Seen	Versus	the	Unseen.	Available	online	
at	http://blog.castsoftware.com/titanic-dilemma-the-seen-versus-the-unseen/	

©	B.	Bühnová,	PV260	Software	Quality	

