
LAB		OF		SOFTWARE		ARCHITECTURES	
AND		INFORMATION		SYSTEMS	
	
FACULTY		OF		INFORMATICS	
MASARYK		UNIVERSITY,		BRNO	

AND		RELATED		PRINCIPLES	

Barbora	Bühnová	
buhnova@fi.muni.cz	

	
CLEAN	CODE,	CODE	SMELLS,	REFACTORING	



Outline	of	the	lecture	

• Motivation	

• The	role	of	naming	
•  Classes,	methods,	variables	

• The	role	of	code	structure	
•  Duplication	
•  Cohesion	and	coupling	
•  S.O.L.I.D.	principles	
•  DRY	and	GRASP	principles	

• Bad	code	smells	

• Refactoring	
• When,	how,	where		

©	B.	Bühnová,	PV260	Software	Quality	



Why	are	we	here?	

!



DO YOU KNOW HOW EXPENSIVE IT IS TO !
HAVE YOU GUYS AROUND?


©	B.	Bühnová		&		V.	Dusch	[1]	



How	is	that	related	to	code	quality?	

Your	codebase	is	just	like	the	database	of	a	website.	

• Read:Write	ratio	is	like	10:1	
																																	… AND BRAINS SUCK AS CACHES!



Goal	is	cheap	Reads	

• People	will	read	your	code	again	and	again	and	again	and	...	

• How	long	does	it	really	take	to	understand	your	module?	

©	B.	Bühnová		&		V.	Dusch	[1]	



Why	is	our	code	hard	to	understand?	

• Management?	

• Unclear	requirements?	

• Customers?	

• Schedules?	
• Requirement	changes?	
	

NO. BECAUSE WE WROTE IT LIKE THAT!

SO HOW TO GET IT RIGHT?


©	B.	Bühnová		&		V.	Dusch	[1]	



Two	rules	of	understandable	code	

1.   Name	things	right	

• Reveal	intent,	self-documented	code.	What	about	comments?	

2.   Balance	code	structure	

• No	God	classes,	long	methods	and	other	bad	code	smells.	

IT IS EASY TO WRITE CODE THAT A MACHINE UNDERSTANDS. 
WRITING CODE THAT ANOTHER HUMAN CAN 

UNDERSTAND IS A LOT HARDER.


©	B.	Bühnová		&		V.	Dusch	[1]	



Let’s	name	things!	






CLASSES, METHODS, VARIABLES, …


©	B.	Bühnová		&		V.	Dusch	[1]	



Classes	

• Name	it	after	its	purpose	–	Single	responsibility	principle!	
	

THE CLASS NAME IS THE SINGLE MOST IMPORTANT !
DEFINITION OF WHAT FITS INTO THAT CLASS.!




• Using	generic	names	throws	that	away!	
ApplicationManager, 
FrameworkDataInformationProvider, 
UtilityDataProcessor 

©	B.	Bühnová		&		V.	Dusch	[1]	



Proper	class	names	lead	to	smaller	classes	

• Should	we	let	our		Email	class	figure	out	attachment	mime	
types?	

• By	always	asking	if	stuff	fits	we	can	‘discover’	new	classes	in	
our	applications	

• EmailAttachment,	ImageEmailAttachment?	

©	B.	Bühnová		&		V.	Dusch	[1]	



And	we	care	because?	

• Big	classes	rob	you	of	all	OO	benefits	

• You	depend	on	way	to	much	other	stuff	

• Usually	tightly	coupled	

• You	can	extend	from	those	classes	and	chances	are	you	can’t	
swap	out	either	

• You	don’t	get	nice	interfaces	as	well	

©	B.	Bühnová		&		V.	Dusch	[1]	



Methods	

• Does	it	return	a	boolean?	

• Call	it	hasX	or	isX	
	

• Hidden	booleans	
	
status = user.getStatus(); 
if(status == user.STATUS_BANNED) { 
} 
 
if(user.isBanned()) { 
} 

©	B.	Bühnová		&		V.	Dusch	[1]	



Getters	and	Setters	

• Getter	retrieve	internal	state	

• Setters	modify	internal	state	

• Both	should	not	modify	anything	else	

• Don’t	make	your	setters	into	liars	

• Make	sure	that	setters	only	return	null!	

©	B.	Bühnová		&		V.	Dusch	[1]	



No	boolean	parameters	

•  If	you	don’t	have	a	very	good	reason!	
	
user.setAdminStatus(false); 
user.setAdminStatus(true); 

• vs.	
	
user.revokeAdminRights(); 
user.grantAdminRights(); 

©	B.	Bühnová		&		V.	Dusch	[1]	



Classes	are	nouns,	methods	start	with	verbs!	

  X.createStuff(); X.deleteStuff() 
  X.dispatchCall(); X.subscribeUser(); 
 

• But	never	
	
user.admin(); or user.bag(); 
list.subscription(); 

©	B.	Bühnová		&		V.	Dusch	[1]	



Agree	on	verbs	for	actions	

• Can	you	tell	me	the	difference	between	
	
directory.delete(entry); 
 

and	
	
directory.remove(entry); 
router.dispatch/delegate(call); 
list.add/append(user); 

• Different	actions	need	distinguishable		names!	
Even	if	that	makes	function	names	longer.	

©	B.	Bühnová		&		V.	Dusch	[1]	



Always	favor	long	function	names?	NO!	

• A	short	an	precise	public	API	is	important	

• Precise	names	help	a	lot	to	create	readable	client	code.	
	

• But	you	want	long	privates	

•  Internally	used	functions	can	be	named	as	verbosely	as	needed	
to	communicate	their	intent	and	behavior.	

©	B.	Bühnová		&		V.	Dusch	[1]	



Readable	classes	

Lots	of	small	descriptive	methods,	best	arranged	as:	
1.  First	you	build	it	
2.  Then	you	call	it	
3.  Then	it	does	work	
4.  Most	work	happens	in	private	methods 

class Log { 

  public Log(SplFileInfo fileInfo) {} 

  public void log() {} 

  private bool isLogfileWriteable() {} 

  private void createLogfileIfNecaccary() {} 

  private void writeToLogfile() {} 

  private void flushCurrentLogfileBuffer() {} 

}	

©	B.	Bühnová		&		V.	Dusch	[1]	



Last	thing	to	name	are	Variables	

Rules	of	thumb:	

• Descriptive	function	parameters	

• Big	scope:	long	name	

• Short	scope:	short	name	

©	B.	Bühnová		&		V.	Dusch	[1]	



Wrapping	up	naming	

•  "A	name,	like	an	honorable	human,	should	say	what	it	means	
and	mean	what	it	says”	

• Names	are	the	basis	of	our	communication!	

• They	can	speed	up	things	immensely!	

©	B.	Bühnová		&		V.	Dusch	[1]	



And	what	about	comments?	

•  I’ve	spend	a	lot	of	time	ranting	about	comments.	Name	things	
properly!	

• Additional	Resources:	
	
http://edorian.posterous.com/they-told-you-to-document-
everything-they-lie 
 
http://www.slideshare.net/Edorian/php-unconference-
europa-clean-code-stop-wasting-my-time 

©	B.	Bühnová		&		V.	Dusch	[1]	



Enough	of	naming?	






LET’S MOVE ON TO CODE STRUCTURE!


©	B.	Bühnová		&		V.	Dusch	[1]	



No	duplication		

• What	can	be	duplicated?	
•  Code	Blocks	
•  Methods	
•  Classes	
•  Functions		
•  Components	
•  Exceptions	
	

• Minimalistic	code	

• What	minimalism	mean?	What	do	we	want	to	minimize?		
What	can	be	minimized?		

©	B.	Bühnová	&		O.	Krajíček	[2]	
	



High	cohesion	and	low	coupling	

Cohesion...		

• How	strongly-related	and	focused	are	the	various	
responsibilities	of	a	module.	

• Classes	with	low	cohesion	have	a	split	personality.		
	

• Coupling...		

• The	degree	to	which	each	program	module	relies	on	each	one	
of	the	other	modules.	

• Coupling	is	directly	related	to	decomposition	and	you	need	to	
keep	it	in	mind	when	you	decompose.		

©	B.	Bühnová	&		O.	Krajíček	[2]	
	



S.O.L.I.D.	principles	

• Single	Responsibility	Principle		

• Open	/	Closed	Principle	

• Liskov	Substitution	Principle		
• Interface	Seggregation	Principle		
• Dependency	Inversion		

©	B.	Bühnová,	PV260	Software	Quality	



SRP:	The	Single	Responsibility	Principle		

THERE SHOULD NEVER BE MORE THAN ONE REASON 
FOR A CLASS TO CHANGE. !
                                        Robert C. “Uncle Bob” Martin 	
• Why	a	reason	for	a	class	to	change?	Why	not	responsibility?	
Because	this	is	all	interconnected!	
•  The	more	responsibilities,	the	more	dependencies.	

•  The	more	dependencies,	the	higher	risk	of	change	propagation.	

•  The	bigger	change	propagation,	the	higher	risk	of	error.	

• Following	SRP	leads	to	lower	coupling	and	higher	cohesion.		

• Many	small	classes	with	distinct	responsibilities	result	in	a	
more	flexible	design.		

©	B.	Bühnová	&	A.	Masood	[3]	



SRP:	The	Single	Responsibility	Principle		
•  public abstract class BankAccount  
{  
  double Balance { get; }  
  void Deposit(double amount); 
  void Withdraw(double amount); 
  void Transfer(double amount, IBankAccount toAccount); 
  void AddInterest(double amount); 
}  
 

Refactor	to:	
	
public abstract class BankAccount  
{  
  double Balance { get; }  
  void Deposit(double amount);  
  void Withdraw(double amount);  
  void Transfer(double amount, IBankAccount toAccount);  
}  
 
public class CheckingAccount : BankAccount  
{  
} 
 
public class SavingsAccount : BankAccount 
{ 
  public void AddInterest(double amount); 
}  

©	B.	Bühnová	&	Los	Techies	[4]	



SRP	Summary	

• Following	SRP	leads	to	lower	coupling	and	higher	cohesion.		

• Many	small	classes	with	distinct	responsibilities	result	in	a	
more	flexible	design.		

©	B.	Bühnová	&	A.	Masood	[3]	



OCP:	The	Open/Closed	Principle		

Open	to	Extension		
New	behavior	can	be	added	in	the	future		

Closed	to	Modification		
Changes	to	source	or	binary	code	are	not	required		

• Bertrand	Meyer	originated	the	OCP	term	in	his	1988	book,	
Object	Oriented	Software	Construction.		
	

In	OOP,	abstractions	include:	

•  Interfaces	

• Abstract	classes	

	 ©	B.	Bühnová	&	A.	Masood	[3]	



Why	is	that	a	problem?	

• We	want	to	avoid	introducing	changes	that	cascade	through	
many	modules	in	our	application		

• Writing	new	classes	is	less	likely	to	introduce	problems!	
•  Nothing	depends	on	new	classes	(yet).	
•  New	classes	have	no	legacy	coupling	to	make	them	hard	to	design	or	
test.	

• Remember	TANSTAAFL		
•  There	Ain’t	No	Such	Thing	As	A	Free	Lunch		
•  OCP	adds	complexity	to	design!	
•  Don’t	apply	OCP	at	first	
If	the	module	changes	once,	accept	it.		
If	it	changes	a	second	time,	refactor	to	achieve	OCP		

©	B.	Bühnová	&	A.	Masood	[3]	



OCP	Summary	

• Conformance	to	OCP	yields	flexibility,	reusability,	and	
maintainability.		

• Know	which	changes	to	guard	against,	and	resist	premature	
abstraction.		

©	B.	Bühnová	&	A.	Masood	[3]	



LSP:	The	Liskov	Substitution	Principle	

THE LISKOV SUBSTITUTION PRINCIPLE STATES THAT SUBTYPES 
MUST BE SUBSTITUTES FOR THEIR BASE TYPES. !
                          Agile Principles, Patterns, and Practices in C# 	
• Named	for	Brabara	Liskov,	who	first	described	the	principle	in	1988.	
	

Substitutability:	

•  Child	classes	must	not:	
•  Remove	base	class	behavior		
•  Violate	base	class	invariants		

•  And	in	general	must	not	require	calling	code	to	know	they	are	different	
from	their	base	type.	

•  To	follow	LSP,	derived	classes	must	not	violate	any	constraints	defined	(or	
assumed	by	clients)	on	the	base	classes.	

©	B.	Bühnová	&	A.	Masood	[3]	



The	Problem	
•  Non-substitutable	code	breaks	polymorphism	

•  Client	code	expects	child	classes	to	work	in	place	of	their	base	classes		

•  “Fixing”	substitutability	problems	by	adding	if-then	or	switch	statements	
quickly	becomes	a	maintenance	nightmare	(and	violates	OCP)		
	

LSP	violation:	

foreach (var emp in Employees)  
{  
  if( emp is Manager ) 
  {  
    _printer.PrintManager( emp as Manager );  
  }  
  else   
  {  
    _printer.PrintEmployee( emp );  
  }  
}	

©	B.	Bühnová	&	A.	Masood	[3]	



LSP	Summary	

• Conformance	to	LSP	allows	for	proper	use	of	polymorphism	
and	produces	more	maintainable	code.	

• Remember	IS-SUBSTITUTABLE-FOR	instead	of	IS-A.		
	

Consider	Refactoring	to	a	new	Base	Class		

• Given	two	classes	that	share	a	lot	of	behavior	but	are	not	
substitutable.	

• Create	a	third	class	that	both	can	derive	from.	

• Ensure	substitutability	is	retained	between	each	class	and	the	
new	base.		

©	B.	Bühnová	&	A.	Masood	[3]	



ISP:	The	Interface	Segregation	Principle		

THE ISP STATES THAT CLIENTS SHOULD NOT BE FORCED TO DEPEND 
ON METHODS THEY DO NOT USE. !
                             Agile Principles, Patterns, and Practices in C# 	

• That	is,	prefer	small,	cohesive	interfaces	to	“fat”	
interfaces.	

• What	is	an	interface?	
Interface	keyword/type		

public interface IDoSomething { … } 	
Public	interface	of	a	class		

public class SomeClass { … }  

©	B.	Bühnová	&	A.	Masood	[3]	



The	Problem		

• Client	references	a	class	but	only	uses	small	portion	of	it		

•  Interface	Segregation	violations	result	in	classes	that	depend	
on	things	they	do	not	need,	increasing	coupling	and	reducing	
flexibility	and	maintainability		

• Unimplemented	interface	methods	

©	B.	Bühnová	&	A.	Masood	[3]	



When	do	we	fix	ISP?		

• Once	there	is	pain		
o If	there	is	no	pain,	there’s	no	problem	to	address.		
	

• If	you	find	yourself	depending	on	a	“fat”	interface	
you	own		
o Create	a	smaller	interface	with	just	what	you	need		
o Have	the	fat	interface	implement	your	new	interface		
o Reference	the	new	interface	with	your	code		
	

• If	you	find	“fat”	interfaces	are	problematic	but	you	do	
not	own	them		
o Create	a	smaller	interface	with	just	what	you	need		
o Implement	this	interface	using	an	Adapter	that	implements	the	
full	interface		

©	B.	Bühnová	&	A.	Masood	[3]	



ISP	Summary		

• Don’t	force	client	code	to	depend	on	things	it	doesn’t	need.		

• Keep	interfaces	small,	cohesive,	and	focused		

• Whenever	possible,	let	the	client	define	the	interface		

• Whenever	possible,	package	the	interface	with	the	client	
o Alternately,	package	in	a	third	assembly	client	and	implementation	both	
depend	upon		

o Last	resort:	Package	interfaces	with	their	implementation		

©	B.	Bühnová	&	A.	Masood	[3]	



DIP:	The	Dependency	Inversion	Principle		

HIGH-LEVEL MODULES SHOULD NOT DEPEND ON LOW-
LEVEL MODULES. BOTH SHOULD DEPEND ON 
ABSTRACTIONS.	

©	B.	Bühnová	&	A.	Masood	[3]	



Traditional	Programming	and	Dependencies		

• High	Level	modules	call	Low	Level	modules	

• User	Interface	depends	on	
o Business	Logic	depends	on		
o Infrastructure		
o Utility		
o Data	Access		

• Static	methods	are	used	for	convenience	or	as	Façade	layers		

• Class	instantiation	/	Call	stack	logic	is	scattered	through	all	
modules		
o Violation	of	Single	Responsibility	Principle		

©	B.	Bühnová	&	A.	Masood	[3]	



The	Problem		

• Dependencies	Flow	Toward	Infrastructure		

• Core	/	Business	/	Domain	Classes	Depend	on	Implementation	
Details		

• Result		
o Tight	coupling		
o No	way	to	change	implementation	details	without	recompile	(OCP	
violation)		

o Difficult	to	test		

©	B.	Bühnová	&	A.	Masood	[3]	



Classes	should	declare	what	they	need		

•  Class	constructor	should	require	any	dependencies	the	class	needs.	

•  Classes	whose	constructors	make	this	clear	have	explicit	dependencies.	
Classes	that	do	not,	have	implicit,	hidden	dependencies. 

public class HelloWorldExplicit  
{  
  private readonly DateTime _timeOfGreeting;  
 
  public HelloWorldExplicit(DateTime timeOfGreeting) 
  { 
    _timeOfGreeting = timeOfGreeting;  
  }  
 
  public string Hello(string name)  
  {  
    if (_timeOfGreeting.Hour < 12) return "Good morning, " + name; 
    if (_timeOfGreeting.Hour < 18) return "Good afternoon, " + name;  
    return "Good evening, " + name;  
  } 
}  

©	B.	Bühnová	&	A.	Masood	[3]	



DIP:	Summary		

• Depend	on	abstractions.	

• Don’t	force	high-level	modules	to	depend	on	low-level	
modules	through	direct	instantiation	or	static	method	calls.		

• Declare	class	dependencies	explicitly	in	their	constructors.	

Dependency	injection		

•  Inject	dependencies	via	constructor,	property,	or	parameter	
injection.		

©	B.	Bühnová	&	A.	Masood	[3]	



DRY:	Don’t	Repeat	Yourself		

“EVERY PIECE OF KNOWLEDGE MUST HAVE A SINGLE, UNAMBIGUOUS 
REPRESENTATION IN THE SYSTEM.”!
                                                    The Pragmatic Programmer 	

	

Variations	include:		

• Once	and	Only	Once		

• Duplication	Is	Evil	(DIE)		

	

©	B.	Bühnová	&	A.	Masood	[3]	



Analysis		

• Magic	Strings/Values		

• Duplicate	logic	in	multiple	locations		

• Repeated	if-then	logic		

• Conditionals	instead	of	polymorphism		

• Repeated	Execution	Patterns		

• Lots	of	duplicate,	probably	copy-pasted,	code		

©	B.	Bühnová	&	A.	Masood	[3]	



DRY:	Summary		

• Repetition	breeds	errors	and	waste		

• Refactor	code	to	remove	repetition		
	

Repetition	in	process	

• Testing		
o Performing	testing	by	hand	is	tedious	and	wasteful		

• Builds		
o Performing	builds	by	hand	is	tedious	and	wasteful		

• Deployments		
o Performing	deployments	by	hand	is	tedious	and	wasteful		

©	B.	Bühnová	&	A.	Masood	[3]	



GRASP	

• General	Responsibility	Assignment	Software	Patterns		

• A	set	of	design	patterns	or	aspects	emphasizing	good	coding	
practices.		

• Might	be	useful,	but	only	after	you	have	good	understanding	
of	SOLID	principles.		

There	is	quite	a	lot	to	it.	Google	it	if	you	are	interested!	

©	B.	Bühnová	&		O.	Krajíček	[2]	
	



Ready	for	more?	

!



BUT WHAT IF WE ALREADY HAVE THE CODE? HOW 
CAN WE FIND OUT IT SMELLS AND HOW CAN 

REFACTORING HELP US WITH THAT?


©	B.	Bühnová,	PV260	Software	Quality	



Bad	Code	Smells		

• Different	abstraction	levels	(not	top	down	-	mixed,	skipping	
levels,	mixing	levels	in	one	method)		

• Low	cohesion	(God	classes,	long	methods,	script/program	
wrapped	as	a	class)		

• Circular	dependencies	(between	classes	-	mother	of	all	tight	
couplings)		

• Duplicated	code	

•  Long	parameter	list	

• …	and	many	many	more	

©	B.	Bühnová	&	M.	Osovský	[5]	



What	is	refactoring?	

• Refactoring	is	the	process	of	changing	a	so:ware	system	in	
such	a	way	that	it	does	not	alter	the	external	behavior	of	the	
code	yet	improves	its	internal	structure	

• Refactoring	(noun):	a	change	made	to	the	internal	structure	of	
so:ware	to	make	it	easier	to	understand	and	cheaper	to	
modify	without	changing	its	observable	behavior.	

• Refactor	(verb):	to	restructure	so6ware	by	applying	a	series	of	
refactorings	without	changing	its	observable	behavior.	

©	B.	Bühnová	&	I.	Crvenov	[6]	



When	to	refactor?	

When	you	have	the	refactoring	hat	on	your	head!		

• As	part	of	the	routine	(e.g.	TDD).	

• After	you	find	weak	code	(boy	scout	rule),	or	need	to	fix	a	bug.	

• Before	and/or	after	you	introduce	code	of	a	new	feature	(or	a	
new	technology	like	IoC	container).	

• Long	term	planned	refactoring		
	

Only	when	it	leads	to	faster	delivery	and	better	maintenance.	
Clean	code	is	a	means	to	this	end.	

©	B.	Bühnová	&	M.	Osovský	[5]	



Where	to	refactor?	Where to refactor?

©	B.	Bühnová	&	M.	Osovský	[5]	



How	to	refactor?	

• Use	IDE	all	the	time	(even	when	renaming!).	
Run	tests	before	and	after!	

• Boundary	tests	(testing	published	interfaces)	should	stay	
green.	

• Know	most	common	refactorings	(extract	...,	rename,	move,	
introduce)	-	learn	to	use	them	as	part	of	your	IDE	mastery.		

©	B.	Bühnová	&	M.	Osovský	[5]	



And	how	MarEn	Fowler	does	it?	

• M.F:	“Whenever	I	do	refactoring,	the	first	step	is	always	the	
same.	I	need	to	build	a	solid	set	of	tests	for	that	secEon	of	
code.	The	tests	are	essenEal	because	even	though	I	follow	
refactorings	structured	to	avoid	most	of	the	opportuniEes	for	
introducing	bugs,	I'm	sEll	human	and	sEll	make	mistakes.	Thus	I	
need	solid	tests.”	

Tip:	

			Before	you	start	refactoring,	check	that	you	have	a	solid	suite		
of	tests.	These	tests	must	be	self-checking	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Refactoring	methods	

Extract	Method	

• You	have	a	code	fragment	that	can	be	grouped	together.	Turn	
the	fragment	in	to	a	method	whose	name	explains	the	purpose	
of	the	method.	

• Extract	Method	is	one	of	the	most	common	refactorings	being	
done.	One	looks	at	a	method	that	is	too	long	or	look	at	code	
that	needs	a	comment	to	understand	its	purpose.	One	then	
turns	that	fragment	of	code	into	its	own	method.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Extract	method	
Before	refactoring 	 	

		
A:er	Refactoring	

void printOwing(double amount) 
{ 
  printBanner(); 
  printDetails(amount); 
} 
 
void printDetails(double amount) 
{ 
  WriteLine("name:" + _name); 
  WriteLine("amount" + amount); 
} 

void printOwing(double amount)    
{ 
  printBanner(); 
 
  //print details 
  WriteLine("name:" + _name); 
  WriteLine("amount" + amount); 
} 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Inline	method	

Before	Refactoring	 A:er	Refactoring	

int getRating()  
{ 
  return (moreThanFiveLateDeliveries()) ?  
  2 : 1; 
} 
 
boolean moreThanFiveLateDeliveries()  
{ 
  return _numberOfLateDeliveries > 5; 
} 

 

int getRating()  
{ 
  return (_numberOfLateDeliveries > 5) ?  
  2 : 1; 
} 

 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Maximum	method	length?	

• Maximum	method	length?	
6	Lines	ought	to	be	enough	for	everybody?	
	

Smaller	is	harder	to	write	

• Writing	ONLY	small	functions	is	a	SKILL	

•  It	is	easy	to	write	big	functions!	

• But	the	first	change	makes	it	all	worth!	

©	B.	Bühnová		&		V.	Dusch	[1]	



Split	temporary	variable	
•  You	have	a	temporary	variable	assigned	to	more	than	once,	but	is	
not	a	loop	variable	nor	a	collecEng	temporary	variable.	Make	a	
separate	temporary	variable	for	each	assignment.	

Before	Refactoring	
	
double temp = 2 * (_height + _width); 
WriteLine(temp); 
temp = _height * _width; 
WriteLine(temp); 

A:er	Refactoring	
	
double perimeter = 2 * (_height + _width); 
WriteLine(perimeter); 
double area = _height * _width; 
WriteLine(area); 

	
©	B.	Bühnová	&	I.	Crvenov	[6]	



Remove	assignments	to	parameters	

• The	code	assigns	to	a	parameter.	
Use	a	temporary	variable	instead.	
	

Before	Refactoring	
  int discount (int inputVal, int quantity, int yearToDate) { 
    if (inputVal > 50) inputVal -= 2; 
    ... 
  } 

A:er	refactoring	
  int discount (int inputVal, int quantity, int yearToDate) { 
    int result = inputVal; 
    if (inputVal > 50) result -= 2; 
    ... 
  } 

	

	
©	B.	Bühnová	&	I.	Crvenov	[6]	



Replace	method	with	method	object	
•  You	have	a	long	method	that	uses	local	variables	in	such	a	way	that	you	
cannot	apply	Extract	Method.	Turn	the	method	into	its	own	object	so	that	
all	the	local	variables	become	fields	on	that	object.	You	can	then	
decompose	the	method	into	other	methods	on	the	same	object.	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Move	method	

• A	method	is,	or	will	be,	using	or	used	by	more	features	of	
another	class	than	the	class	on	which	it	is	defined.	

Create	a	new	method	with	a	similar	body	in	the	class	it	uses	most.	Either	turn	
the	old	method	into	a	simple	delegaEon,	or	remove	it	altogether.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Move	field	

• A	field	is,	or	will	be,	used	by	another	class	more	than	the	class	
on	which	it	is	defined.	Create	a	new	field	in	the	target	class,	
and	change	all	its	users.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Extract	class	

• You	have	one	class	doing	work	that	should	be	done	by	two.	
Create	a	new	class	and	move	the	relevant	fields	and	methods	
from	the	old	class	into	the	new	class.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Inline	class	

• A	class	isn't	doing	very	much.Move	all	its	features	into	another	
class	and	delete	it.	

•  Inline	Class	is	the	reverse	of	Extract	Class.	I	use	Inline	Class	if	a	
class	is	no	longer	pulling	its	weight	and	shouldn't	be	around	
any	more.	O:en	this	is	the	result	of	refactoring	that	moves	
other	responsibiliEes	out	of	the	class	so	there	is	liWle	le:.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Hide	delegate	

• A	client	is	calling	a	delegate	class	of	an	object.	

Create	methods	on	the	server	to	hide	the	delegate.	

	

	

	

	

	

Does	it	make	sense	to	reverse	this		
refactoring?	

	 ©	B.	Bühnová	&	I.	Crvenov	[6]	



Remove	the	middle	man	

• A	class	is	doing	too	much	simple	delegaEon.	Get	the	client	to	
call	the	delegate	directly.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Replace	data	with	value	object	

• You	have	a	data	item	that	needs	addiEonal	data	or	behavior.	
Turn	the	data	item	into	an	object.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Replace	array	with	object	

�  You	have	an	array	in	which	certain	elements	mean	different	
things.	Replace	the	array	with	an	object	that	has	a	field	for	
each	element.	

 String[] row = new String[3]; 
row [0] = "Liverpool”; 
row [1] = "15"; 

After	Refactoring:	

 Performance row = new Performance(); 
row.setName("Liverpool"); 
row.setWins("15"); 

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Replace	magic	number	with	a	constant	

�  You	have	a	literal	number	with	a	particular	meaning.	Create	a	
constant,	name	it	after	the	meaning,	and	replace	the	number	
with	it.	

 
double potentialEnergy(double mass, double height)  
{ 
  return mass * 9.81 * height; 
} 
 
double potentialEnergy(double mass, double height)  
{ 
  return mass * GRAVITATIONAL_CONSTANT * height; 
} 
 
static final double GRAVITATIONAL_CONSTANT = 9.81; 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Encapsulate	field	

• There	is	a	public	field.	Make	it	private	and	provide	accessors.	
 public String _name; 
 

After	Refactoring:	
 
private String _name; 
public String getName() {return _name;} 
public void setName(String arg) {_name = arg;} 

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Encapsulate	collecEon	
�  A	method	returns	a	collection.	Make	it	return	a	read-only	view	and	

provide	add/remove	methods.	

	

	

	

	

	

Motivation		

	Often	a	class	contains	a	collection	of	instances.	This	collection	
might	be	an	array,	list,	set,	or	vector.	Such	cases	often	have	the	
usual	getter	and	setter	for	the	collection.	

	 ©	B.	Bühnová	&	I.	Crvenov	[6]	



Decompose	condiEonal	

�  You	have	a	complicated	conditional	(if-then-else)	statement.	
Extract	methods	from	the	condition,	then	part,	and	else	parts.	

	
if (date.before (SUMMER_START) || date.after(SUMMER_END)) 
  charge = quantity * _winterRate + _winterServiceCharge; 
else  
  charge = quantity * _summerRate; 

After	Refactoring:	

  if (notSummer(date)) 
  charge = winterCharge(quantity); 
else  
  charge = summerCharge (quantity); 

	
©	B.	Bühnová	&	I.	Crvenov	[6]	



Consolidate	conditional	expression	

�  You	have	a	sequence	of	conditional	tests	with	the	same	result.	
Combine	them	into	a	single	conditional	expression	and	extract	
it.	
double disabilityAmount() { 
  if (_seniority < 2) return 0; 
  if (_monthsDisabled > 12) return 0; 
  if (_isPartTime) return 0; 
  .. 

After	Refactoring:	
	
// compute the disability amount 
double disabilityAmount() { 
  if (isNotEligableForDisability()) return 0; 
  .. 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Consolidate	duplicate	conditional	fragments	

• The	same	fragment	of	code	is	in	all	branches	of	a	condiEonal	
expression.	Move	it	outside	of	the	expression	

	if (isSpecialDeal()) {  
  total = price * 0.95; 
  send(); 
} 
else { 
  total = price * 0.98; 
  send(); 
} 
 
A:er	Refactoring:	
if (isSpecialDeal()) 
  total = price * 0.95; 
else 
  total = price * 0.98; 
send(); 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Replace	nested	conditional	with	guard	classes	

•  A	method	has	condiEonal	behavior	that	does	not	make	clear	the	normal	path	of	execuEon.	Use	guard	
clauses	for	all	the	special	cases	

double getPayAmount() { 
  double result; 
  if (_isDead) result = deadAmount(); 
  else 
  { 
    if (_isSeparated) result = separatedAmount(); 
    else { 
      if (_isRetired) result = retiredAmount(); 
      else result = normalPayAmount(); 
    }; 
  } 
  return result; 
}; 

After	Refactoring:	

double getPayAmount() { 
  if (_isDead) return deadAmount(); 
  if (_isSeparated) return separatedAmount(); 
  if (_isRetired) return retiredAmount(); 
  return normalPayAmount(); 
}; 

©	B.	Bühnová	&	I.	Crvenov	[6]	



Rename	method	

• The	name	of	a	method	does	not	reveal	its	purpose.	Change	the	
name	of	the	method	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Separate	query	from	modifier	

• You	have	a	method	that	returns	a	value	but	also	changes	the	
state	of	an	object.	Create	two	methods,	one	for	the	query	and	
one	for	the	modificaCon.	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Parameterized	method	

• Several	methods	do	similar	things	but	with	different	values	
contained	in	the	method	body.	Create	one	method	that	uses	a	
parameter	for	the	different	values.	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Introduce	parameter	to	object	

• You	have	a	group	of	parameters	that	naturally	go	together.	
Replace	them	with	an	object.	

	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Remove	se^ng	methods	

• A	field	should	be	set	at	creaEon	Eme	and	never	altered.	
Remove	any	seFng	method	for	that	field.	

• Providing	a	se^ng	method	indicates	that	a	field	may	be	
changed.	If	you	don't	want	that	field	to	change	once	the	object	
is	created,	then	don't	provide	a	se^ng	method	(and	make	the	
field	final).	That	way	your	intenEon	is	clear	and	you	o:en	
remove	the	very	possibility	that	the	field	will	change.	

	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Hide	method	

• A	method	is	not	used	by	any	other	class.	Make	the	method	
private	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Pull	up	field	

• Two	subclasses	have	the	same	field.	Move	the	field	to	the	
superclass.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Pull	up	method	

• Two	subclasses	have	the	same	field.	Move	the	field	to	the	
superclass.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Push	down	method	

• Behavior	on	a	superclass	is	relevant	only	for	some	of	its	
subclasses.	Move	it	to	those	subclasses	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Extract	subclass	

• A	class	has	features	that	are	used	only	in	some	instances.	
Create	a	subclass	for	that	subset	of	features	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Extract	superclass	

• You	have	two	classes	with	similar	features.	Create	a	superclass	
and	move	the	common	features	to	the	superclass.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Collapse	hierarchy	

• A	superclass	and	subclass	are	not	very	different.	Merge	them	
together.	

	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Refactoring	and	performance	

• To	make	the	so:ware	easier	to	understand,	you	o:en	make	
changes	that	will	cause	the	program	to	run	more	slowly.	

• However,	the	calling	overhead	is	very	small	and	pays	off!	

©	B.	Bühnová	&	I.	Crvenov	[6]	



Takeaways	

•  It	always	pays	off	to	make	your	code	easier	to	understand.	

• Write	self-documenting	code,	use	naming	(not	comments)	to	
express	code’s	intent.	

• Understand	S.O.L.I.D.	principles	and	do	not	be	afraid	to	
restructure	your	code	into	MANY	small	classes	and	methods.		

• Refactoring	and	testing	make	you	FASTER!	
•  Bad	code	smells	will	navigate	you.	

Barbora	Bühnová,	FI	MU	Brno	
buhnova@fi.muni.cz	
www.fi.muni.cz/~buhnova	

	

contact me 

thanks for listening 

©	B.	Bühnová,	PV260	Software	Quality	



References	

•  [1]	V.	Dusch:	Stop	wasting	time	through	clean	code	

•  [2]	Ondřej	Krajíček:	PV260	lecture	in	Spring	2015	

•  [3]	Adnan	Masood:	Refactoring	Code	to	a	Solid	Foundation	

•  [4]	Los	Techies:	Pablo's	SOLID	Software	Development	

•  [5]	Martin	Osovský:	PV260	lecture	in	Spring	2015	

•  [6]	Igor	Crvenov:	Refactoring	Tips	by	Marin	Fowler	

©	B.	Bühnová,	PV260	Software	Quality	


