
LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

PV260 - SOFTWARE QUALITY

LECT3. Software Measurement & Metrics and their role 
in quality improvement

Bruno Rossi
brossi@mail.muni.cz



2-107

● Introduction

● The Measurement Process

● Motivational Examples

● Background on Software Measurement

● The Goal Question Metrics approach

● Measures and Software Quality Improvement

 → SQALE (Software Quality Assessment Based on Lifecycle 
Expectations)

● Case Studies

Outline



3-107

● The following bug (can you spot it?) in Apple's SSL code was undiscovered 
from Sept 2012 to Feb 2014 – how can it be?

M. Bland, “Finding more than one worm in the apple,” 
Communications of the ACM, vol. 57, no. 7, pp. 58–64, 
Jul. 2014.

Introduction



4-107

● Modern systems are very large & complex in terms of 
structure & runtime behaviour

● The figure on the right
represents Eclipse JDT 3.5.0 
(350K LOCs, 1.324 classes,
23.605 methods )

Classes  black - Methods  red – Attributes  blue. Method containment, attribute containment, and class → → →
inheritance  gray - Invocations  red - Accesses   blue→ → →

Introduction



5-107

● We need ways to understand attributes of software, represent in a 
concise way and use it to track for software & development process 
improvement

● Software Measurement and Metrics are one of the aspects we can 
consider

LOCs 354.780
NOM 23.605
NOC 1.324
NOP 45
LOCs=lines of  code, NOM=nr. of  methods
NOC=nr. of  classes, NOP=nr. of  packages

If we consider the following metrics, 
what can we say?
Are they “good” metrics?

Introduction



6-107

● Measurement is the process by which numbers or symbols 
are assigned to attributes of entities in the real world in 
such a way as to describe them according to clearly defined 
rules (N. Fenton and S. L. Pfleeger, 1997)

 → A measurement is the process to define a measure

Measurement



7-107

● The measurement process goes from the real world to the 
numerical representation

● Interpretation goes from the numerical representation to the 
relevant empirical results  

Real World Numbers

Reduced
Numbers

Relevant
Empirical
Results

Intelligence Barrier

Measures

Interpretation

The Measurement Process



8-107

● To avoid anecdotal evidence without a clear study (through 
experiments or prototypes for example)

● To increase the visibility and the understanding of the process

● To analyze the software development

● To make predictions through statistical models

Gilbs’s Principle of fuzzy targets (1988):
“Projects without clear goals will not achieve their goals clearly”

Why Software Measurement



9-107

● Although measurement may be integrated in development,  
very often objectives of measurements are not clear

● “I measure the process because there is an automated tool 
that collects the metrics, but do not know how to read the 
data and what I can do with the data”

Tom De Marco (1982):
“You cannot manage what you cannot measure” ...

...but you need to know what to measure and how to measure

However...



10-107

Motivational Example



11-107

● Expert source code and system review after reported cases of 
accidents due to cars accelerating without users' inputs *

● 18 months review + previous NASA experts code review

● Investigation on unintended accelerations

Review of Defective Toyota Camry's System (1/3)

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf 



12-107

● Usage of software metrics (p.24):

● “Data-flow spaghetti
– Complex coupling between software modules and between tasks
– Count of global variables is a software metric for “tangledness”

 → 2005 Camry L4 has >11,000 global variables (NASA)”

Review of Defective Toyota Camry's System (2/3)

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf 



13-107

● Usage of software metrics (p.24):

● “Control-flow spaghetti
– Many long, overly-complex function bodies
– Cyclomatic Complexity is a software metric for “testability”

 → 2005 Camry L4 has 67 functions scoring >50 (“untestable”)
 → The throttle angle function scored over 100 (unmaintainable)”

● See also p.30-31 for coding rules violations and expected number of bugs 

Review of Defective Toyota Camry's System (3/3)

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf 



14-107

Pitfalls in linking the real world 
phenomenon to numbering systems



15-107

● You were asked to conduct a study to evaluate whether there is 
discrimination among man and woman in university's enrollment

● You set-up a case study and looked at the final results

 → Is there a discrimination in place?

 → What can you conclude from the numbers above?

Applicants  % admitted

Men            8442 44%

Woman      4321 35%

A Motivational Example (1/3)



16-107

● Now look at the same study, but performed at the department level (top 6 
departments):

● There does not seem to be any discrimination against women! The conclusion is that women 
tended to apply to more competitive departments than men 

● The effect we just saw is called Simpson's paradox

Source of the example: http://en.wikipedia.org/wiki/Simpson%27s_paradox – considering the following papers: 

J. Pearl (2000). Causality: Models, Reasoning, and Inference, Cambridge University Press.

P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley. Science 187 (4175): 398–404.

Department Men Women

Applicants % admitted Applicants % admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%

A Motivational Example (2/3)



17-107

● Simpsons' paradox: How can it be?

● It can happen that:
a/b < A/B

c/d < C/D

(a + c)/(b + d) > (A + C)/(B + D)

● e.g. 
1/5 < 2/8

6/8 < 4/5

7/13 > 6/13

● It is the result of not considering an hidden variable, as in the example not considering 
the difficulty of entering a certain department

Dept Men Women

Applicants admitted Applicants admitted

A 5 20% 8 25%

B 8 75% 5 80%

Total 13 53% 13 46%

A Motivational Example (3/3)



18-107

Background on Software Measurement



19-107

Measurement 
artifacts / 
objects

Product 
(architecture 

implementation, 
documentation)

Process 
(management, life-

cycle, CASE)

Resources 
(personnel, 
software, 
hardware)

Measurement 
Models

Flow graphs

Call graphs

Structure tree

Code schema

...

Scale 
types, 

statistics

Correlation

Estimation

Adjustment

Calibration

Measurement 
Evaluation

Analysis

Visualization

Exploration

Prediction

...

Measurement 
Goals

Understanding

Learning

Improvement

Management

Controlling

...

artefactBased
operation

quantificationBased
operation

valueBased
operation

experienceBased
operation

Software Measurement Methods



20-107

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Measurable 
Concept: 
abstract relationship 
between attributes of 
entities and 
information needs

Measurement Information Model (ISO/IEC 15939)



21-107

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Property relevant to 
information needs 

Operations mapping 
an attribute to a scale

Variable assigned a 
value by applying the 
method to one attribute

Algorithm for combining
two or more base 
measures

Variable assigned a 
value by applying the 
measurement function 
to two or more values of 
base measures

Bottom partMeasurement Information Model (ISO/IEC 15939)



22-107

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Algorithm for combining 
measures and decision 
criteria

Variable assigned a value 
by applying the analysis 
model to base and/or 
derived measures

Explanation relating the 
quantitative information in 
the indicator to the 
information needs

The outcome of the 
measurement process 
that satisfies the 
information needs

Top partMeasurement Information Model (ISO/IEC 15939)



23-107

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

B1= Nr. of 
inaccurate 

computations 
encountered 

by users

B2= 
Operation 

Time

B1/B2

Computational 
Accuracy

Comparison of 
values obtained 

with generic 
thresholds and/or 

targets

External quality 
measures – 

Functionality - 
Accuracy

Software

Run-time 
accuracy

Run-time 
usability

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

B1= Number of 
detected 
failures

B2= Number 
of performed 

test cases

B1/B2

Failure density 
against test 

cases

Comparison of 
values obtained 

with generic 
thresholds and/or 

targets

External quality 
measures – 
Reliability - 

Maturity

Software

Run-time 
reliability

Level of 
testing

Inspired by Abran, Alain, et al. "An information model for software quality measurement with ISO standards." Proceedings of the International 
Conference on Software Development (SWDC-REK), Reykjavik, Iceland. 2005.

ISO/IEC 15939 Examples



24-107

● A measure is a mapping between 

– The real world 

– The mathematical or formal world with its objects and relations

● Different mappings give different views of the world depending on the 
context (height, weight, …)

● The mapping relates attributes to mathematical objects; it does not relate 
entities to mathematical objects

Measure Definition



25-107

● The validity of a measure depends on definition of the attribute 
coherent with the specification of the real world

– Is LOC a valid measure?

– It depends on our measurement goals, e.g.:

 → Do we consider blanks and comments in the LOCs?

 → How are the lines exactly computed (e.g. considering “;” as end 
statements only)

You might have two different projects with two different 
definitions of LOCs so that the following can be true at the same 
time P1>P2 and P1<P2

Valid Measure



26-107

● From Wikipedia: “...A program with high code coverage has been 
more thoroughly tested and has a lower chance of containing 
software bugs than a program with low code coverage...” 

● Would you consider code coverage as a valid measure of how much 
thoroughly one software project has been tested?

● Suppose you have two projects and you compute code coverage

P1  70%        vs        P2  80%→ →

Would you generally consider P2 to be “better” (more accurately) tested 
than P1?

Valid Measures – Example (1/4)



27-107

Coverage 100%

[01] double div (int x, int y){
[02]    return x/y;
[03] }

AssertEquals(1.0, div(1,1));

Coverage 100%

assertEquals(0.66, div(2,3), 0.1);

[01] double div (int x, int y){
[02]    return x/y;
[03] }

A. Is it realistic to consider every test covering the same nr. of lines 
as equal? 

B. Is it realistic to consider every line of code as equally important for 
testing?  

Software follows usually a Pareto principle, so that 80% of the bugs 
are in the 20% of the code  as well usually this code is more difficult →
to cover with tests

Valid Measures – Example (2/4)



28-107

So should we “throw away” code 
coverage?

● According to Martin Fowler: “Test 
coverage is a useful tool for 
finding untested parts of a 
codebase. Test coverage is of little 
use as a numeric statement of how 
good your tests are” 
(http://martinfowler.com/bliki/TestCoverage.html)

 

Valid Measures – Example (3/4)



29-107

● What is happening in this case is that we do not respect 
the representation condition: when we assign symbols 
to the attributes of entities we need to preserve the 
meaning of relationships when moving entities from the real 
world to the numerical world

Real
World

Mathem.
World

1-1 mapping on relations

Valid Measures – Example (4/4)



30-107

● The triple (A, B, μ ) is called a scale

● We can have different types of scales:

– nominal scale: ((A,≈),( , =), μ ), where ≈ stands for an equivalence relation and = ℝ
for a numerical relation (two objects are equivalent or not).

– ordinal scale: ((A, ∙≥),( , ≥), μ ), where ∙≥ describes ranking propertiesℝ

– interval scale: ((A × A, ∙≥),(  × , ≥), μ ), where ∙≥ is a preference relation about ℝ ℝ
the measured objects, entities or artifacts,

– ratio scale: ((A, ∙≥, ◦),( , ≥, ), μ ), where the described axioms of an extensive ℝ ⊗
structure above are valid.

Measurement Scales

C. Ebert and R. Dumke, Software Measurement: Establish - Extract - Evaluate - Execute, Softcover 
reprint of hardcover 1st ed. 2007 edition. Springer, 2010.



31-107

● Considering the scale is quite important for the admissible 
operations

Scale Type Examples Indicators of Central Tendency 

Nominal Name of the programming 
language (e.g. Java, C++, C#)

Mode

Ordinal Ranking of failures (as a 
measure of failure severity)

Mode + Median

Interval Beginning date, end date of 
activities

Mode + Median + Arithmetic 
Mean

Ratio LOC (as a measure of program 
size)

Mode + Median + Arithmetic 
Mean + geometric Mean

Morasca, Sandro. "Software measurement." Handbook of Software Engineering and Knowledge 
Engineering (2001): 239-276.

Measurement Scales



32-107

● Example, suppose that we have the following ranking of 
software tickets by severity

Level Severity Description

6 Blocker Prevents function from being used, no work-
around, blocking progress on multiple fronts

5 Critical Prevents function from being used, no work-
around

4 Major Prevents function from being used, but a work-
around is possible

3 Normal A problem making a function difficult to use but 
no special work-around is required

2 Minor A problem not affecting the actual function, but 
the behavior is not natural

1 Trivial A problem not affecting the actual function, a 
typo would be an example

Measurement Scales - Examples



33-107

● Is it meaningful to use the weighted average to compare two projects in 
terms of severity of the open issues? 

Order Severity P1 P2

6 Blocker 2 10

5 Critical 36 19

4 Major 25 22

3 Normal 15 32

2 Minor 2 5

1 Trivial 121 113

Sev (P1)=avg(2∗6+36∗5+25∗4+15∗3+2∗2+121∗1)=77
Sev (P2)=avg(10∗6+19∗5+22∗4+32∗3+5∗2+113∗1)=77

Really the projects are the same? 
Is there the same distance from 
a critical ticket to a blocker that 
there is between minor and 
trivial?

Measurement Scales - Examples



34-107

● Some measures are harder to collect or are not regularly 
collected

– Direct: from a direct process of measuring

– Indirect: from a mathematical equation in the world of symbols

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Property relevant to 
information needs 

Operations mapping 
an attribute to a scale

Variable assigned a 
value by applying the 
method to one attribute

Algorithm for combining
two or more base 
measures

Variable assigned a 
value by applying the 
measurement function 
to two or more values of 
base measures

This is what in ISO/IEC 
15939 we refer as base 
measure and derived 
measure

Direct vs Indirect Measures



35-107

● Direct
– Number of known defects

● Indirect
– Defects density (DD)

– COCOMO, measure of effort

E=a⋅KSLoCb⋅EAF

where b=0.91+0.01∑
i=1

5

SF i

a=2.94

DD=
known defects
product size

Direct vs Indirect Measures



36-107

● It easier to collect measures of length and complexity of 
the code (internal attributes of product) than measures 
of its quality (external attributes)

– Internal attribute: internal characteristics of product, process, 
and human resources

– External attributes: due to external environment

Internal vs External Attributes



37-107

Objective: the same each time they are taken (e.g. 
automated collected by some device)

 → e.g. LOCs 

Subjective: manually collected by individuals

 → e.g. time to use a functionality in an application 

Objective vs Subjective Measures



38-107

SOFTWARE METRICS - SIZE



39-107

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   public static int[] generatePrimes(int maxValue){
[09]     if (maxValue < 2){
[10]        return new int[0];
[11]     }else{
[12]        uncrossIntegersUpTo(maxValue);
[13]        crossOutMultiples();
[14]        putUncrossedIntegersIntoResult();
[15]        return result;
[16]     }
[17]   }
[18] }

Various Measures of Size



40-107

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   public static int[] generatePrimes(int maxValue){
[09]     if (maxValue < 2){
[10]        return new int[0];
[11]     }else{
[12]        uncrossIntegersUpTo(maxValue);
[13]        crossOutMultiples();
[14]        putUncrossedIntegersIntoResult();
[15]        return result;
[16]     }
[17]   }
[18] }

LOC  = 18 
(Lines Of Code)

CLOC=3
(Commented
Lines of Code)

Various Measures of Size



41-107

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   public static int[] generatePrimes(int maxValue){
[09]     if (maxValue < 2){
[10]        return new int[0];
[11]     }else{
[12]        uncrossIntegersUpTo(maxValue);
[13]        crossOutMultiples();
[14]        putUncrossedIntegersIntoResult();
[15]        return result;
[16]     }
[17]   }
[18] }

NLOC  = 15 
(Non-Commented
Lines Of Code)

Various Measures of Size



42-107

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   public static int[] generatePrimes(int maxValue){
[09]     if (maxValue < 2){
[10]        return new int[0];
[11]     }else{
[12]        uncrossIntegersUpTo(maxValue);
[13]        crossOutMultiples();
[14]        putUncrossedIntegersIntoResult();
[15]        return result;
[16]     }
[17]   }
[18] }

NOC     =  1
(Number Of 
Classes)

NOM = 1
(Number of
Methods)

NOP = 1
(Number of
Packages)

Various Measures of Size



43-107

● Size is used for normalization of existing 
measures 

 → from the example before, it would be much more useful to report a 
comments density of 16% (3/18) rather than 3 CLOCs Why?

CD=
CLOCs
LOCs

=
3
18

=0.16

Measures of Size Good for?



44-107

● Example, using comments density to compare Open Source 
projects after normalization

What is a good 
reference value for 
comments density 
in your opinion?

These look “scary”

O. Arafat and D. Riehle, “The comment density of open source software code,” in 31st International Conference on Software 
Engineering - Companion Volume, 2009. ICSE-Companion 2009, 2009, pp. 195–198.

Measures of Size Good for?



45-107

● Size can give a good rough initial estimation of effort, 
although...

● Size should NEVER be used to assess the productivity of 
developers Why?

How would you compare 
Mozilla Firefox with the 
Linux Kernel in terms of 
maintenance effort?

Software LOCs

Microsoft Windows Vista ~50M

Linux Kernel 3.1 ~15M

Android ~12M

Mozilla Firefox ~10M

Unreal Engine 3   ~2M

Measures of Size Good for?



46-107

→ http://www.informationisbeautiful.net/visualizations/million-lines-of-code/  

● Size can be used for comparison of projects and across 
releases

Measures of Size Good for?

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/


47-107

● “The task then is to refine the code base to better meet 
customer need. If that is not clear, the programmers 
should not write a line of code. Every line of code 
costs money to write and more money to support.” 

Jeff Sutherland, one of the main proponents of the 
Agile Manifesto and the SCRUM methodology

One Observation about LOCs



48-107

SOFTWARE METRICS - COMPLEXITY



49-107

CC = 3
Number of decision points - if, 
while, for, foreach, case, 
default, continue, goto, &&, 
||, catch, ? : (ternary 
operator), ??(nonnull operator)

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   public static int[] generatePrimes(int maxValue){
[09]     if (maxValue < 2){
[10]        return new int[0];
[11]     }else{
[12]        uncrossIntegersUpTo(maxValue);
[13]        crossOutMultiples();
[14]        putUncrossedIntegersIntoResult();
[15]        return result;
[16]     }
[17]   }
[18] }

Typical ranges
1-4 low
5-7 medium
8-10 high
11+ very high

Cyclomatic Complexity (CC)

v(G) = e – n + 2



50-107

● The following code structure from a 2008 students' project 
implementing chess: one method with 292LOCs and 163 CC

Example by using CC



51-107

● Let's decompose a bit such huge method

public boolean eatCoin(Movement mov, Movement eatMov, Coin coin) 
throws IOException{

//Controls if the eatMove is in the board, if not return
if(!canMove(eatMov)){

System.out.println("You can't eat this coin");
return false;

}

try{
//If it is a coin
if(!this.board[mov.row][mov.col].isKing()){

//If the coin to eat isn't a king
System.out.println("nextRow " + mov.nextRow + "   

                      nextCol " + mov.nextCol + " isKing " +          
                      this.board[mov.nextRow][mov.nextCol].isKing());

if(!this.board[mov.nextRow][mov.nextCol].isKing()){
....

Example by using CC



52-107

Example by using CC



53-107

● A word of warning is that metrics take typically into account syntactic 
complexity NOT semantical complexity

● Both of the following code fragments have the same Cyclomatic 
Complexity

[04] public class PrimeGenerator
[05] {
[06]   private static boolean[] crossedOut;
[07]   private static int[] result;
[08]   
[09]   public static int[] generatePrimes(int maxValue){
[10]     if (maxValue < 2){
[11]        return new int[0];
[12]     }else{
[13]        uncrossIntegersUpTo(maxValue);
[14]        crossOutMultiples();
[15]        putUncrossedIntegersIntoResult();
[16]        return result;
[17]   }
[18] }

[04] public class A
[05] {
[06]   private static boolean[] c;
[07]   private static int[] b;
[08]   
[09]   public static int[] generate(int m){
[10]     if (m < 2){
[11]        return new int[0];
[12]     }else{
[13]        methodOne(m);
[14]        methodTwo();
[15]        methodThree();
[16]        return b;
[17]   }
[18] }

● As well, as in the initial motivating example, a word of warning 
when comparing projects in terms of average complexity

Complexity



54-107

OBJECT ORIENTED METRICS



55-107

http://www.hanselman.com/blog/content/binary/NDepend%20metrics%20placemats%201.1.pdf


56-107

The Goal Question Metrics 

(GQM) Approach



57-107

● Common pitfalls in software measurement
– Collecting measurements without a meaning

● Measurement must be goal-driven

– Not analyzing measurements
● Numbers need detailed analysis

– Setting unrealistic targets
● Targets should not be uniquely defined based on the numbers

– Paralysis by analysis
● Measurement is a key activity in management, not a separate activity

Count what is countable.
Measure what is measurable.
And what is not measurable, make measurable.
Galileo Galilei

Software Measurement - Pitfalls



58-107

● Introduced in 1986 by Rombach and Basili
– GQM stands for Goal Question Metric

● It is a deductive instrument to derive suitable 
measures from prescribed goals

● The paradigm is initiated by Business Goals (BG)

The GQM Approach



59-107

● Improve the quality of a software product 

● Understand the development process for  a given project

● Enhance the inspection process in the testing phase

● Decide on the adoption of a new software tool

● Evaluate costs of a transition to a new sw solution 

● Assess the efficiency of the development process

● Evaluate the current testing strategy

Examples of Business Goals



60-107

● From the BGs we can derive the GQM 

● The Goal Question Metric top-down approach consists of 
three layers

– Conceptual layer – the Measurement Goal (G)

– Operational layer – the Question (Q)

– Measurement layer – the Metric (M)

The GQM Approach



61-107

● Measurements must be goal-oriented

● Following typically a structure as the GQM approach:

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Goal-oriented Measurement



62-107

Starting with objectives which can be personal or company-wide it is determined 
what to improve. Goals are translated into what should be achieved in the context 
of a software project or process or product

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Goal-oriented Measurement



63-107

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Identification about how the improvement should be done
Asking questions helps in clarifying how the objectives of step 1 will effectively 
(and efficiently) be reached

Goal-oriented Measurement



64-107

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Identify appropriate measurements that will indicate progress and whether the 
change is pointing in a good direction

Goal-oriented Measurement



65-107

The primary question must be “What do I need to improve?” rather than “What 
measurements should I use?”
Software measurements should follow from the organizational needs 

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key 
performance indicators, 
projects targets, 
improvements goals

Approaches to reach the 
goals, improvement 
programs, change 
management, project 
management techniques

Business, employee, 
products, processes

What are the goals to reach? 
What do I need to improve? 

How do I reach my 
objectives? I will I improve?

Am I doing good or bad? Am I 
doing better or worse?

Feedback loop 
(understand)

Review

Define

Goal-oriented Measurement



66-107

● The MG is structured in 5 items
– Object of Study (OS): what we want to measure - as a model

– Purpose: is the major verb 

– Focus (F): the perspective to which one looks at the OS

– Point of view: generally is a person or a category of people

– Context: the environment in which the OS is observed

The Measurement Goal



67-107

● Here are some possible and common used words for each 
item of the Goal structure

● Object of study: process, product, model, metric, etc
● Purpose: characterize, evaluate, predict, motivate, etc. in 

order to understand, assess, manage, engineer, improve, 
etc. it

● Point of view: manager, developer, tester, customer, etc. 

● Perspective or Focus: cost, effectiveness, correctness, 
defects, changes, product measures, etc.

● Environment or Context: specify the environmental factors, 
including process factors, people factors, problem factors, 
methods, tools, constraints, etc.

The Measurement Goal



68-107

● The Question is a link between OS and F

● BG
1
: improve the software inspection process

● MG
1
: Analyze the current inspection process to evaluate it in terms 

of duration testing from the point of view of the testers in a small 
software house

– OS: Inspection method

– Focus: cost

– Q Link: weekly labor of a tester to inspect a code

● Q
1
: What is the cost of the weekly labor of a tester to inspect a code 

with the given process?

The Questions - Example



69-107

● Metrics are a set of measures for  OS, F, and the QL

● Example

● I can derive the following metrics

M1= weekly salary * effort * # testers

M2= weekly salary * effort * duration of the inspection

The Metrics - Example



70-107

Software Measurement & the role in
Software Quality Improvement



71-107

● One of the aims of Software Engineering is to improve the 
quality of the software

External Product Measures



72-107

● The mapping of internal attributes to external ones – and 
then quality in use – is not as straightforward

External Product Measures



73-107

● Concept that dates back to hardware reliability
– But software has a different behavior

– Ideas never wear out they do not deteriorate as they are not bounded to a 
physical object 

● A system is said reliable if it operates in an external 
environment following the prescribed specifications 

● A failure is a deviation from the prescribed flow 

● The concept is depending on time: a system is reliable 
in a given interval of time
– Reliability is traditionally measures by the number of  occurrences of 

failures (in time)

– There exists no software product with zero defects

Example - Reliability



74-107

● The mapping of internal attributes to external ones – and 
then quality in use – is not as straightforward

Example - Reliability

nr. of 
failures over 
a period of 

time 
How many faults were
detected in reviewed

Product?
X=A/B

A=Absolute number of faults 
detected in review

B=Number of estimated faults to 
be detected in review (using past 

history or reference model)

Is there a relation 
between the two?



75-107

● Failures are difficult to trace
● They depend on the environment
● They depend by the end-users
● Failures are hardly collected

– Automatic or autonomous collection
● They may contain useless information
● Big effort to clean the data

● Use of internal causes of failures
– Defects, bugs, faults, errors

● Hope: fix internal mistakes to fix the 
corresponding failure(s)

Internal Measures of Reliability



76-107

● Intervening to fix a bug may inject new bugs (hence failures) 
in the code
– The same happens in the design, architecture, test

● Testing the code to find failures cannot reproduce all the 
users’ behaviour (in vitro testing)

● Inspecting the code is expensive
● It is not proved that there is a clear cause effect relation 

between defects and failures
– A failure is caused by defects

– A defect might not cause a failure in the time  period in which the application is 
used

– Pareto principle: The 20% of the classes are responsible of the 80% of the failures

Problems



77-107

 SQALE (Software Quality Assessment 
Based on Lifecycle Expectations)



78-107

● SQALE (Software Quality Assessment Based on Lifecycle Expectations) 
is a quality method to evaluate technical debts in software projects 
based on the measurement of software characteristics

● It allows to discuss here how quality characteristics have been 
mapped into numerical representations

SQALE



79-107

● SQALE quality model is based around three levels, the first one 
including 8 software characteristics

SQALE

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability



80-107

● The second level is formed by characteristics

SQALE

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability

Unit Testing Testability

Integration Testing Testability

Data related reliability
Logic related reliability
Statement related reliability
Synchroniation related reliability
Resource related reliability
Architecture related reliability
Fault tolerance

Understandability
Readability

...

...

...

...

...



81-107

● The third level is linking language specific constructs to the sub-
characteristics

SQALE

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability

Unit Testing Testability

Integration Testing Testability

Data related reliability
Logic related reliability
Statement related reliability
Synchroniation related reliability
Resource related reliability
Architecture related reliability
Fault tolerance

Understandability
Readability

...

...

...

...

...

Number of parameters in a module call (NOP) <6

Coupling between objects (CBO) <7

Switch statements have a 'default' condition

No assignement ' =' within 'if' statement

No assignement ' =' within 'while' statement

Invariant iteration index



82-107

● For each of the source code requirements we need to associate a 
remediation function that translates the non-compliances into 
remediation costs

● In the most complex case you can associate a different function for 
each requirement, but in the most simple case you can have some 
predefined value for categories in which code requirements are in: 

SQALE – Remediation Function



83-107

● Non-remediation funtions represent the cost to keep a non-
conformity so a negative impact from the business point of view 

SQALE – Non-Remediation Function



84-107

● Sums of all the remediation costs associated to a particular hierarchy of 
characteristics constitute an index:

– SQALE Testability Index: STI

– SQALE Reliability Index: SRI

– SQALE Changeability Index: SCI

– SQALE Efficiency Index: SEI

– SQALE Security Index: SSI

– SQALE Maintainability Index: SMI

– SQALE Portability Index: SPI

– SQALE Reusability Index: SRuI 

–  SQALE Quality Index: SQI (overall index)

SQALE – Indices

* Note that there is a version of each index that represents density, 
normalized by some measure of size



85-107

● Indexes can be used to build a rating value:

SQALE – Rating

Rating=
estimated remediationcost
estimated development cost

Rating=
8.30h
300h

=2.7%->C

Example, an artefact that has an estimated 
development cost of 300 hours and a STI of 8.30 
hours, and using the reference table on the left



86-107

● The final representation can take the form of a Kiviat diagram in 
which the different density indexes are represented

SQALE – Rating



87-107

● This is the view you find in SonarCube
http://www.sonarqube.org/sonar-sqale-1-2-in-screenshot

SQALE – Rating



88-107

● Given our initial discussion of measurement pitfalls, scales and 
representation condition, the following sentence should be now 
clear:

“Because the non-remediation costs are not established on an 
ordinal scale but on a ratio scale, we have shown [..] that we can 
aggregate the measures by addition and comply with the 
measurement theory and the representation clause.”

SQALE

Letouzey, Jean-Louis, and Michel Ilkiewicz. "Managing technical debt with the SQALE method." IEEE software 6 
(2012): 44-51.



89-107

Case Studies



90-107

● Suppose that we have the some projects on which 
we computed the following set of metrics

● What can you say about the projects?

Project01 Project02 Project03 Project04 Project05 Project06
# LOCS 4920 5817 4013 4515 3263 5735
# packages 29 49 33 35 25 33
# classes 126 199 159 181 75 198
# methods 658 862 644 817 415 715
# attributes 153 196 227 285 78 177
# parameters 301 459 393 440 182 415
# local vars 493 533 325 397 339 416
# calls 2051 2830 1844 2297 917 2015
Proj_status complete complete incomplete complete incomplete complete

Case Study



91-107

● What if we consider relative instead of absolute 
values?

● This would allow to compare the values across 
projects

Project01 Project02 Project03 Project04 Project05 Project06
LOCs/NOM 7.48 6.75 6.23 5.53 7.86 8.02
NOC/NOP 4.34 4.06 4.82 5.17 3.00 6.00
NOM/NOC 5.22 4.33 4.05 4.51 5.53 3.61
att/NOC 1.21 0.98 1.43 1.57 1.04 0.89
param/NOM 0.46 0.53 0.61 0.54 0.44 0.58
locvars/NOM 0.75 0.62 0.50 0.49 0.82 0.58
Calls/NOM 3.12 3.28 2.86 2.81 2.21 2.82 highest value
Proj_status complete complete incomplete complete incomplete complete lowest value

Case Study



92-107

Case Study
● What if we make sense out of the metrics by using the GQM 

approach?

G1. Analyze the software product (object of study) for the purpose of 
evaluation (purpose) with respect to the effectiveness of code structure 
(quality focus) from the point of view of the development team (point of 
view) in the environment of our project named xyx (environment).

Q1.1. what is 
the structure of 
the system?

M1.2.1 
Calls/NOM

M1.2.2 
param/NOM

M1.1.3 
NOM/NOC

Q1.2. what is 
the coupling 
within the 
system?

M1.1.1 
NOC/NOP

M1.1.2 
LOCs/NOM



93-107

Case Study
● What if we make sense out of the metrics by using the GQM 

approach?

G1. Analyze the software product (object of study) for the purpose of 
evaluation (purpose) with respect to the effectiveness of code structure 
(quality focus) from the point of view of the development team (point of 
view) in the environment of our project named xyx (environment).

Q1.1. what is 
the structure of 
the system?

M1.2.1 
Calls/NOM

M1.2.2 
param/NOM

M1.1.3 
NOM/NOC

Q1.2. what is 
the coupling 
within the 
system?

M1.1.1 
NOC/NOP

M1.1.2 
LOCs/NOM

P1: 3.12 P5: 2.21 P1: 0.46 P5: 0.44



94-107

Case Study
● What happens if we consider LOCs instead of NOMs?

G1. Analyze the software product (object of study) for the purpose of 
evaluation (purpose) with respect to the effectiveness of code structure 
(quality focus) from the point of view of the development team (point of 
view) in the environment of our project named xyx (environment).

Q1.1. what is 
the structure of 
the system?

M1.2.1 
Calls/LOCs

M1.2.2 
param/LOCs

M1.1.3 
NOM/NOC

Q1.2. what is 
the coupling 
within the 
system?

M1.1.1 
NOC/NOP

M1.1.2 
LOCs/NOM

P1: 0.41 P5: 0.28 P1: 0.14 P5: 0.05



95-107

● Another useful way to think in terms of relative values and thresholds 
is to use the Overview Pyramid

● The Overview pyramid allows to represent three different aspects of 
internal quality: inheritance, size & complexity and coupling

● It provides both absolute and relative values that are compared against 
typical thresholds

NOP: Number of Packages
NOC: Number of Classes
NOM: Number of Methods
LOC: Lines of Code
CYCLO: Cyclomatic Complexity

ANDC: Average Number of Derived Classes
AHH: Average Hierarchy Height
CALL: Number of Distinct Method Invocations
FANOUT: Number of Called Classes

Case Study – The Overview Pyramid



96-107

Project 1

Project 2

Project 3

Close to high

Close to average

Close to low

Case Study – The Overview Pyramid



97-107

Project 4

Project 5

Project 6

Close to high

Close to average

Close to low

Case Study – The Overview Pyramid



98-107

Back to our initial project
Eclipse JDT 3.5.0

The overview pyramid

Close to high

Close to average

Close to low

Case Study – The Overview Pyramid



99-107

● Measurement is important to track progress of software 
projects and to focus on relevant parts that need attention

● As such, we always need to take measurement into account 
with some “grain of salt”

● Still, collecting non-relevant or non-valid metrics might be 
even  worse than not collecting any valid measure at all

Conclusions



100-107

Extra Slides



101-107

● LOCs: Lines of Code
● CC: McCabe Cyclomatic complexity
● Fan in: number of local flows that terminates in a module  
● Fan out: number of local flows emanate from a module
● Information flow complexity of a a module: length of the module times the 

squared difference of fan in and fan out 
● NOM: Number of Methods per class
● WMC: Weighted Methods per Class 
● DIT: Depth of Inheritance Tree 
● NOC: Number of Children
● CBO: Coupling Between Objects
● RFC: Response For a Class
● LCOM: Lack of Cohesion of Methods
● ANDC: Average Number of Derived Classes
● AHH: Average Hierarchy Height

List of some Acronyms



102-107

– Analogies

– Axioms

– Correlations

– Criterions

– Intuitions

– Laws

– Lemmas

– Formulas,

– Methodologies 

– Principles 

– Relations 

– Rule Of Thumbs

–  Theories

● Measurement Experience can have the form of:

Measurement Experience



103-107

Example: Laws in 
Software 
Engineering: how 
were these derived?

Software Engineering Laws (1/4)



104-107

Information hiding in object 
oriented programming

“A human being can concentrate on 
7±2 items at a time”

“Productivity is improved by 
reducing accidents  and 
controlling essence”

“Testing can show 
the presence but not 
absence of errors”

Pr(A|B) = Pr(B|A)*Pr(A) / Pr(b)

Software Engineering Laws (2/4)



105-107

“Requirement 
deficiencies are the 
prime source of 
project failure”

“The value of a 
model depends on 
the view taken,but 
none is best for all 
purposes”

“the user will never 
know what they want 
until after the system 
is in production”

“Good designs 
require deep 
application domain 
knowledge”

“What applies to 
small systems does 
not apply to large 
ones”

“Everything put 
together falls apart 
sooner or later”

8 laws of software
evolution

Software Engineering Laws (3/4)



106-107

The number of transistors on an 
integrated circuit will double in about 
18 months.

The number of radio 
communications doubles every 30 
months

“the number of lines of 
code a programmer can 
write in a fixed period of 
time is the same 
regardless of the 
programming language”

“If builders built 
buildings the way 
programmers 
wrote programs, 
the first 
woodpecker that 
came along 
would destroy 
civilization”

Perspective based 
inspections (along one 
dimension, for a
specific stakeholder) are 
highly eeffective and 
efficient

Software reuse reduces 
cycle time and 
increases productivity 
and quality

Software Engineering Laws (4/4)



107-107

● N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach, Third 
Edition, 3 edition. Boca Raton: CRC Press, 2014.

● C. Ebert and R. Dumke, Software Measurement: Establish - Extract - Evaluate - 
Execute, Softcover reprint of hardcover 1st ed. 2007 edition. Springer, 2010.

● Lanza, Michele, and Radu Marinescu. Object-oriented metrics in practice: using 
software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer Science & Business Media, 2007.

● Some code samples from Martin, Robert C. Clean code: a handbook of agile software 
craftsmanship. Pearson Education, 2008.

● Moose platform for software data analysis http://moosetechnology.org

● The SQALE Method http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf  

References

http://moosetechnology.org/
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

