o0 QUALLTLY IN SOF T VAT
ENGINEERING

| ean Architecture and Best Practices

"“‘l’ N ' v
0 - Ondrej Krajicek

(" ondre|.krajicek@ysoft.com

) |http//linked.in/in/ondrejkrajicek

2
% @hedragon @ysoftdevs

mailto:ondrej.krajicek@ysoft.com
http://linked.in/in/ondrejkrajicek

SoftBank 11:24 < X 68

km/h

Characteristics of the Maturity levels

Focus on process
Improvement

Level 4 Processes measured
Quantitatively Managed and controlled

Processes characterized for the
Level 3 organization and is proactive.

Defi n ed (Projects tailor their processes from

organization's standards)

Processes characterized for projects
and Is often reactive.

Processes unpredictable,
poorly controlled and reactive

Organisations which design systems are constrained to produce
designs which are copies of the communication structures of

these organisations.
P CONVVART

Architecture
Design

Code

PR HIH EC T URE AND DESICHS

SOFTWARE ARCHITECTURE
B ES ANSVVERS 1O THE MO
P ENSIVE QUESTIC R

SOFTWARE ARCHITECTURE
e SERVAINT OF RIGH-PRIORI Y 5 TAKEHOLDER VAT S

S AS SIMPLE AS POSSIBLE, BUT NOT SIMPLER AND

S DESIGNED TO BE REPLACEABLE.
(TOM GILB)

Software Architecture

Servant to Stakeholder Values

SImple, but not Simpler

Replaceable

SOFTWARE DESIGN IS A DECOMPOSITION
Dia s onall oo

INTO A SET OF CONTRACTS
BASED ON
s U CIATED QUALL RS
Al CONITRACITS RESPECT ST5 RS
BCIUNIIARIES,

SOFTWARE DESIGN |5 ABOUT ANSWERS TO

QUESTIONS WHERE CHANGES GO

BEYOND A SINGLE UNIT, SUCH AS A CLASS OR A
GBS

PRV IS

(SOMETIMES INTENDED)
BEHAVIOR

FR ALY OF THE DESICHES

* Extreme Programming

» SOLID GRASP Principles
»+ Design Patterns
E vt/ ECDB Patterns

» Refactoring

X1 REME PROGRAMMITYES

£ BID0 (Keeb it Simple and Stupid)

» YAGNI (You Ain’'t Gonna Need it)

o SIMELICHT Y KU

» Kent Beck's Four Rules of Simple Design
¥ IBSts Fass

F Lresses Intent

» No Duplication

* Minimalistic Code

ety T

* Jests tell you when you are done.

* Verification and Validation Tests
e Automatic or Manual

£ Linit lesting

R T ES TR

¥ w/hat is a Unit!

» Basic Structure of a Unit Test (Arrange - Act - Assert)

Dot practices!

f hiPie assert per test.

» Jest Driven Development (Chicago vs. London School of Unit Testing)

» Black-box vs. White-box Approach

EAPRESSES [N EINR

L (e commments. ..

. are not enougn!

» Self-documenting Code
http://c2.com/cgi/wiki!’SelfDocumentingCode

http://c2.com/cgi/wiki?SelfDocumentingCode

EXPRESSES INTENT (2)

» Methods vs. Code Fragments
http://c2.com/cgi/wiki{MethodsVsCoderkragments

» Separate Interfaces from Implementation

http://c2.com/cgi/wiki!Separatelnterfaceskromlmplementation

 Handle Errors in Context

http://c2.com/cgi/wiki?HandleErrorsinContext

http://c2.com/cgi/wiki?MethodsVsCodeFragments
http://c2.com/cgi/wiki?SeparateInterfacesFromImplementation
http://c2.com/cgi/wiki?HandleErrorsInContext

HANDLING ERRORS

P Tandie errors in the same place where you detected tnem.

* Handle errors as late as you possibly can.

INL) DUPLICATIC

» What can be duplicated?

£ L oae Blocks = Componienits
F ethods * EXcEDon
s { lasses .

& Functions

EHIMALISTIC COToE

* \What minimalism mean! What do we want to minimize?

* \What can be minimized?

EOOUPLING AND COHESICES

= (onesion.

» How different parts of an interface / contract are related to each other and cooperate together.
» (Classes with high cohesion have a split personality.

& L oupling, ..

he Interaction dependency between different parts of the system.

» Coupling Is directly related to decomposition and you need to keep 1t in mind when you
decompose.

SOLID GRASP

» Single Responsibility Principle

¥ Ocn / Closed Principle

» Liskov Substrtution Principle

* Interface Segregation Principle

* Dependency Inversion

CIRASH

» (General Responsibility Assisnment Software Patterns

* A set of design patterns or aspects emphasising sood coding
practices.

» Might be useful, but only after you have good understanding of
SOLID principles.

DESIGN PAT TERNS

RS (1o some extent)

» Gor (Creational, Behavioral and S

« Model-View-Controller

» Entity-Boundary-Control

Bflo e

ural)

B) TOR THCOUGHE

* Example of just-in-time-design : Refactor to Open/Closed
http://blog.goyello.com/2014/02/ 1 | /example-of-|just-in-time-design-refactor-to-open-closed/

» Extreme Programming Simplicity Rules
http://www.c2.com/cgi/wiki!XpSimplicrityRules

» Distributed Big Balls of Mud
http://www.codingthearchitecture.com/2014/0//06/distributed big balls_of mud.html

* Microservices until Macrocomplexity
https://michaelfeathers.silvrback.com/microservices-until-macro-complexity

» Microservices and the failure of Encapsulation
https://michaelfeathers.silvrback.com/microservices-and-the-failure-of-encapsulaton

« CodeSmell

http://c2.com/cgi/wiki!CodeSmell

¢ (il 1 DD or L ondon School

http://codemanship.co.uk/parlezuml/blog/!postid=98/

» Model-View-Controller - a terrific MVC diagram
http://alvinalexander.com/uml/uml-model-view-controller-mvc-diagram

http://blog.goyello.com/2014/02/11/example-of-just-in-time-design-refactor-to-open-closed/
http://www.c2.com/cgi/wiki?XpSimplicityRules
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
https://michaelfeathers.silvrback.com/microservices-until-macro-complexity
https://michaelfeathers.silvrback.com/microservices-and-the-failure-of-encapsulaton
http://c2.com/cgi/wiki?CodeSmell
http://codemanship.co.uk/parlezuml/blog/?postid=987
http://alvinalexander.com/uml/uml-model-view-controller-mvc-diagram

