
PV260 QUALITY IN SOFTWARE
ENGINEERING

Lean Architecture and Best Practices

Ondřej Krajíček 
ondrej.krajicek@ysoft.com

http://linked.in/in/ondrejkrajicek
@hedragon @ysoftdevs

mailto:ondrej.krajicek@ysoft.com
http://linked.in/in/ondrejkrajicek

Organisations which design systems are constrained to produce
designs which are copies of the communication structures of

these organisations.
—M. CONWAY

Architecture

Design

Code

ARCHITECTURE AND DESIGN

SOFTWARE ARCHITECTURE
GIVES ANSWERS TO THE MOST

EXPENSIVE QUESTIONS.

SOFTWARE ARCHITECTURE
IS THE SERVANT OF HIGH-PRIORITY STAKEHOLDER VALUES.

IS AS SIMPLE AS POSSIBLE, BUT NOT SIMPLER AND
IS DESIGNED TO BE REPLACEABLE.

(TOM GILB)

• Software Architecture

• Servant to Stakeholder Values

• Simple, but not Simpler

• Replaceable

SOFTWARE DESIGN IS A DECOMPOSITION
OF A SYSTEM

INTO A SET OF CONTRACTS
BASED ON

ASSOCIATED QUALITIES,
SO THAT CONTRACTS RESPECT SYSTEM

BOUNDARIES.

SOFTWARE DESIGN IS ABOUT ANSWERS TO
QUESTIONS WHERE CHANGES GO

BEYOND A SINGLE UNIT, SUCH AS A CLASS OR A
MODULE.

CODE…

…PROVIDES
(SOMETIMES INTENDED)

BEHAVIOR.

QUALITY OF THE DESIGN

• Extreme Programming

• SOLID GRASP Principles

• Design Patterns

• MVC / ECB Patterns

• Refactoring

EXTREME PROGRAMMING

• KISS (Keep it Simple and Stupid)

• YAGNI (You Ain’t Gonna Need it)

XP SIMPLICITY RULES
• Kent Beck’s Four Rules of Simple Design

• Tests Pass

• Expresses Intent

• No Duplication

• Minimalistic Code

TESTS PASS

• Tests tell you when you are done.

• Verification and Validation Tests

• Automatic or Manual

• Unit Testing

UNIT TESTING
• What is a Unit?

• Basic Structure of a Unit Test (Arrange - Act - Assert)

• Best practices?

• Single assert per test.

• Test Driven Development (Chicago vs. London School of Unit Testing)

• Black-box vs. White-box Approach

EXPRESSES INTENT

• Code comments…

• …are not enough!

• Self-documenting Code 
http://c2.com/cgi/wiki?SelfDocumentingCode

http://c2.com/cgi/wiki?SelfDocumentingCode

EXPRESSES INTENT (2)

• Methods vs. Code Fragments 
http://c2.com/cgi/wiki?MethodsVsCodeFragments

• Separate Interfaces from Implementation  
http://c2.com/cgi/wiki?SeparateInterfacesFromImplementation

• Handle Errors in Context 
http://c2.com/cgi/wiki?HandleErrorsInContext

http://c2.com/cgi/wiki?MethodsVsCodeFragments
http://c2.com/cgi/wiki?SeparateInterfacesFromImplementation
http://c2.com/cgi/wiki?HandleErrorsInContext

HANDLING ERRORS

• Handle errors in the same place where you detected them.

• Handle errors as late as you possibly can.

NO DUPLICATION
• What can be duplicated?

• Code Blocks

• Methods

• Classes

• Functions

• Components

• Exceptions

• ?

MINIMALISTIC CODE

• What minimalism mean? What do we want to minimize?

• What can be minimized?

COUPLING AND COHESION
• Cohesion…

• How different parts of an interface / contract are related to each other and cooperate together.

• Classes with high cohesion have a split personality.

• Coupling…

• The interaction dependency between different parts of the system.

• Coupling is directly related to decomposition and you need to keep it in mind when you
decompose.

SOLID GRASP

• Single Responsibility Principle

• Open / Closed Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion

GRASP

• General Responsibility Assignment Software Patterns

• A set of design patterns or aspects emphasising good coding
practices.

• Might be useful, but only after you have good understanding of
SOLID principles.

DESIGN PATTERNS

• GRASP (to some extent)

• GoF (Creational, Behavioral and Structural)

• Model-View-Controller

• Entity-Boundary-Control

FOOD FOR THOUGHT

• Example of just-in-time-design : Refactor to Open/Closed 
http://blog.goyello.com/2014/02/11/example-of-just-in-time-design-refactor-to-open-closed/

• Extreme Programming Simplicity Rules 
http://www.c2.com/cgi/wiki?XpSimplicityRules

• Distributed Big Balls of Mud 
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

• Microservices until Macrocomplexity 
https://michaelfeathers.silvrback.com/microservices-until-macro-complexity

• Microservices and the failure of Encapsulation  
https://michaelfeathers.silvrback.com/microservices-and-the-failure-of-encapsulaton

• CodeSmell 
http://c2.com/cgi/wiki?CodeSmell

• Classic TDD or London School  
http://codemanship.co.uk/parlezuml/blog/?postid=987

• Model-View-Controller - a terrific MVC diagram 
http://alvinalexander.com/uml/uml-model-view-controller-mvc-diagram

http://blog.goyello.com/2014/02/11/example-of-just-in-time-design-refactor-to-open-closed/
http://www.c2.com/cgi/wiki?XpSimplicityRules
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
https://michaelfeathers.silvrback.com/microservices-until-macro-complexity
https://michaelfeathers.silvrback.com/microservices-and-the-failure-of-encapsulaton
http://c2.com/cgi/wiki?CodeSmell
http://codemanship.co.uk/parlezuml/blog/?postid=987
http://alvinalexander.com/uml/uml-model-view-controller-mvc-diagram

