
LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

PV260 - SOFTWARE QUALITY

LECT 6. Basic Principles of Testing. Requirements and
test cases. Test plans and risk analysis. Specific issues in
testing OO Software.

Bruno Rossi
brossi@mail.muni.cz

2-100

● Software Testing

 → Introduction

 → Basic Principles

● From Requirements to Test Cases

 → Functional testing

 → Translating specifications into test cases

● Software Testing Risk Analysis

● Specific Issues in Testing Object Oriented Software

Outline

"Discovering the unexpected is "Discovering the unexpected is
more important than confirming more important than confirming
the known." the known."

George BoxGeorge Box

4-100

● In Eclipse and Mozilla, 30–40% of all changes are fixes
(Sliverski et al., 2005)

● Fixes are 2–3 times smaller than other changes (Mockus
+Votta, 2000)

● 4% of all one-line changes introduce new errors
(Purushothaman + Perry, 2004)

Introduction

A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging,
2 edition. Amsterdam ; Boston: Morgan Kaufmann, 2009. 

5-100

Motivating Examples

A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic Debugging,
2 edition. Amsterdam ; Boston: Morgan Kaufmann, 2009. 

6-100

Static void ssl_io_filter_disable(ap_filter_t *f)
{ bio_filter_in_ctx_t *inctx = f->ctx;

 inctx->ssl = NULL;
 inctx->filter ctx->pssl = NULL;
}

Apache web server, version 2.0.48
Response to normal page request on secure (https) port

Example: A Memory Leak

No obvious error, but Apache
leaked memory slowly (in
normal use) or quickly (if
exploited for a DOS attack)

(c) 2007 Mauro Pezzè & Michal Young

7-100

Static void ssl_io_filter_disable(ap_filter_t *f)
{ bio_filter_in_ctx_t *inctx = f->ctx;
 SSL_free(inctx -> ssl);
 inctx->ssl = NULL;
 inctx->filter ctx->pssl = NULL;
}

Apache web server, version 2.0.48
Response to normal page request on secure (https) port

The missing code is for a structure
defined and created elsewhere,
accessed through an opaque pointer.

Example: A Memory Leak

(c) 2007 Mauro Pezzè & Michal Young

8-100

Static void ssl_io_filter_disable(ap_filter_t *f)
{ bio_filter_in_ctx_t *inctx = f->ctx;
 SSL_free(inctx -> ssl);
 inctx->ssl = NULL;
 inctx->filter ctx->pssl = NULL;
}

Apache web server, version 2.0.48
Response to normal page request on secure (https) port

Almost impossible to find with unit
testing. (Inspection and some
dynamic techniques could have found
it.)

Example: A Memory Leak

(c) 2007 Mauro Pezzè & Michal Young

9-100

● “Testing is the process of exercising or evaluating a system
or system component by manual or automated means to
verify that it satisfies specified requirements.” IEEE
standards definition

What is Software Testing

10-100

Reminder for some important terms:

● Defect: “An imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be
either repaired or replaced.”

● Error: “A human action that produces an incorrect result”

● Failure: “(A) Termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits.
(B) An event in which a system or system component does not perform a
required function within specified limits.

 A failure may be produced when a fault is encountered→ . “

● Fault: “A manifestation of an error in software.”

● Problem: “(A) Difficulty or uncertainty experienced by one or more
persons, resulting from an unsatisfactory encounter with a system in use.
(B) A negative situation to overcome”

What is Software Testing

Definitions according to IEEE Std 1044-2009 “IEEE Standard Classification for Software Anomalies“

11-100

Hopefully you haven't seen some of these

12-100

Maybe some of these...

13-100

And defects are everywhere...
This is one failure I encountered when preparing this
presentation on LibreOffice 4.2.7.2

A formula in ppt that got converted
into image – looks good when
editing

The slides preview on the left, looks
a bit strange...

When converted to pdf...

14-100

Where is the term “bug”?

● Very often a synonymous of “defect” so that “debugging” is the
activity related to removing defects in code

However:

 → it may lead to confusion: it is not rare the case in which “bug” is
used in natural language to refer to different levels:

“this line is buggy” - “this pointer being null, is a bug” - “the
program crashed: it's a bug”

 → starting from Dijkstra, there was the search for terms that could
increase the responsibility of developers – the term “bug” might give
the impression of something that magically appears into software

What about the term “Bug”?

Definitions according to IEEE Std 1044-2009 “IEEE Standard Classification for Software Anomalies“

15-100

Who's to blame?

image from http://blog.smartbear.com/sqc/when-bad-software-requirements-happen-to-good-people

16-100

● Sensitivity: better to fail every time than sometimes

● Redundancy: making intentions explicit

● Restrictions: making the problem easier

● Partition: divide and conquer

● Visibility: making information accessible

● Feedback: applying lessons from experience in process
and techniques

Basic Principles of Testing

(c) 2007 Mauro Pezzè & Michal Young

17-100

● Consistency helps:
– a test selection criterion works better if every selected test

provides the same result, i.e., if the program fails with one
of the selected tests, it fails with all of them (reliable
criteria)

– run time deadlock analysis works better if it is machine
independent, i.e., if the program deadlocks when analyzed on
one machine, it deadlocks on every machine

Sensitivity: better to fail every time than sometimes

(c) 2007 Mauro Pezzè & Michal Young

18-100

● Look at the following code fragment

Sensitivity Example

char before[] = “=Before=”;
char middle[] = “Middle”;
char after [] = “=After=”;

int main(int argc, char *argv){

 strcpy(middle, “Muddled”); /* fault, may not fail */
 strncpy(middle, “Muddled”, sizeof(middle)); /* fault, may not fail */

}

What's the problem?

(c) 2007 Mauro Pezzè & Michal Young

19-100

● Let's make the following adjustment

Sensitivity Example

char before[] = “=Before=”;
char middle[] = “Middle”;
char after [] = “=After=”;

int main(int argc, char *argv){

 strcpy(middle, “Muddled”); /* fault, may not fail */
 strncpy(middle, “Muddled”, sizeof(middle)); /* fault, may not fail */
 stringcpy(middle, “Muddled”, sizeof(middle)); /* guaranteed to fail */

}

void stringcpy(char *target, const char *source, int size){
 assert(strlen(source) < size);
 strcpy(target, source);
}

This adds sensitivity to a
non-sensitive solution

(c) 2007 Mauro Pezzè & Michal Young

20-100

● Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

Sensitivity Example

public class TestIterator {

 public static void main(String args[]) {

 List<String> myList = new ArrayList<>();

 myList.add("PV260");
 myList.add("SW");
 myList.add("Quality");

 Iterator<String> it = myList.iterator();
 while (it.hasNext()) {
 String value = it.next();
 System.out.println(value);
 myList.remove(value);
 }
 }
} Will this output

“PV260
SW
Quality” ?

21-100

● Let's look at the following Java code fragment. We use the ArrayList as a
sort of queue and we remove one item after printing the results

Sensitivity Example

public class TestIterator {

 public static void main(String args[]) {

 List<String> myList = new ArrayList<>();

 myList.add("PV260");
 myList.add("SW");
 myList.add("Quality");

 Iterator<String> it = myList.iterator();
 while (it.hasNext()) {
 String value = it.next();
 System.out.println(value);
 myList.remove(value);
 }
 }
} Actually, this throws

java.util.ConcurrentModificationException

22-100

● From Java SE documentation:

● “[...] Some Iterator implementations (including those of all the general
purpose collection implementations provided by the JRE) may choose to
throw this exception if this behavior is detected. Iterators that do this are
known as fail-fast iterators, as they fail quickly and cleanly, rather that
risking arbitrary, non-deterministic behavior at an undetermined time in
the future.”

● “Note that fail-fast behavior cannot be guaranteed as it is, generally
speaking, impossible to make any hard guarantees in the presence of
unsynchronized concurrent modification. Fail-fast operations throw
ConcurrentModificationException on a best-effort basis. Therefore, it
would be wrong to write a program that depended on this exception for
its correctness: ConcurrentModificationException should be used only
to detect bugs.”

Sensitivity Example

23-100

• Redundant checks can increase the capabilities of catching
specific faults early or more efficiently.
– Static type checking is redundant with respect to dynamic

type checking, but it can reveal many type mismatches
earlier and more efficiently.

– Validation of requirement specifications is redundant
with respect to validation of the final software, but can reveal
errors earlier and more efficiently.

– Testing and proof of properties are redundant, but are
often used together to increase confidence

Redundancy: making intentions explicit

(c) 2007 Mauro Pezzè & Michal Young

24-100

• Adding redundancy by asserting that a condition must
always be true for the correct execution of the program

Redundancy Example

void save(File *file, const char *dest){
 assert(this.isInitialized());
 ...
}

• From a language (e.g. Java) point of view, why are we obliged to
declare the exception we throw from a method - isn't this
redundant?

 public void throwException() throws FileNotFoundException{
 throw new FileNotFoundException();
 }

Think if you could throw any exception from a method
without declaration in the method signature

25-100

• Suitable restrictions can reduce hard (unsolvable) problems to
simpler (solvable) problems
– A weaker spec may be easier to check: it is impossible (in general) to

show that pointers are used correctly, but the simple Java requirement
that pointers are initialized before use is simple to enforce.

– A stronger spec may be easier to check: it is impossible (in general) to
show that type errors do not occur at run-time in a dynamically typed
language, but statically typed languages impose stronger restrictions that
are easily checkable.

Restriction: making the problem easier

(c) 2007 Mauro Pezzè & Michal Young

26-100

● Will the following compile in Java?

Restriction Example

 public static void questionable(){
 int k;
 for (int i=0; i<10;++i){
 if (someCondition(i)){
 k = 0;
 } else {
 k+=i;
 }
 }
 }

 int k;

 if (true == false){
 k+=i;
 }

Java ALWAYS enforces variable initialization before usage
as the following example shows – this is a case of restriction

But restrictions can be applied at different levels, e.g. at the
architectural level the decision of making the HTTP protocol
stateless hugely simplified testing (and as such made the
protocol more robust)

27-100

• Hard testing and verification problems can be handled by
suitably partitioning the input space:
– both structural (white box) and functional test (black

box) selection criteria identify suitable partitions of code or
specifications (partitions drive the sampling of the input space)

– verification techniques fold the input space according to
specific characteristics, grouping homogeneous data together
and determining partitions

→ Examples of structural (white box) techniques: unit
testing, integration testing, performance testing

→ Examples of functional (black box) techniques: system
testing, acceptance testing, regression testing

Partition: divide and conquer

(c) 2007 Mauro Pezzè & Michal Young

28-100

● Non-uniform distribution of faults

● Example: Java class “roots” applies quadratic equation

● Incomplete implementation logic: Program does not properly handle the
case in which b2 - 4ac = 0 and a = 0

 → Failing values are sparse in the input space — needles in a very big
haystack. Random sampling is unlikely to choose a=0.0 and b=0.0

Partition - Example

These would make good input values for test cases

(c) 2007 Mauro Pezzè & Michal Young

ax2
+bx+c=0

x=
−b±√b2−4 ac

2a

29-100

Partition - Example

Failure (valuable test case)

No failure

Failures are sparse
in the space of
possible inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will
include the dense parts

Functional testing is one way of
drawing pink lines to isolate
regions with likely failures

Th
e

sp
ac

e
of

 p
os

si
bl

e
in

pu
t

va
lu

es
(t

he
 h

ay
st

ac
k)

(c) 2007 Mauro Pezzè & Michal Young

30-100

● The ability to measure progress or status
against goals

● X visibility = ability to judge how we are doing on X, e.g.,
schedule visibility = “Are we ahead or behind schedule,”
quality visibility = “Does quality meet our objectives?”

– Involves setting goals that can be assessed at each
stage of development

● The biggest challenge is early assessment, e.g., assessing
specifications and design with respect to product quality

● Related to observability
– Example: Choosing a simple or standard internal data

format to facilitate unit testing

Visibility: Judging status

(c) 2007 Mauro Pezzè & Michal Young

31-100

● The HTTP Protocol

Visibility - Example

GET /index.html HTTP/1.1
Host: www.google.com

Why wasn't a more efficient binary format selected?

To note HTTP 2.0 will use a binary format
(from https://http2.github.io/faq):
“Binary protocols are more efficient to parse, more compact “on
the wire”, and most importantly, they are much less error-prone,
compared to textual protocols like HTTP/1.x, because they often
have a number of affordances to “help” with things like whitespace
handling, capitalization, line endings, blank links and so on.”
In fact, reduction of visibility is confirmed by
“It’s true that HTTP/2 isn’t usable through telnet, but we already
have some tool support, such as a Wireshark plugin.”

32-100

• Learning from experience: Each project provides
information to improve the next

• Examples
– Checklists are built on the basis of errors revealed in the past

– Error taxonomies can help in building better test selection
criteria

– Design guidelines can avoid common pitfalls

Feedback: tuning the development process

Using a software reliability model fitting past project data
Looking for problematic modules based on prior knowledge

(c) 2007 Mauro Pezzè & Michal Young

33-100

From Requirements to Test Cases

34-100

According to ISO/IEC/IEEE 29148-2011 standard:
● Correctness: requirements represent the client’s view

● Completeness: all possible scenarios through the system are
described, including exceptional behavior by the user

● Consistency: There are functional or nonfunctional requirements
that contradict each other

● Clarity: There are no ambiguities in the requirements

● Realism: Requirements can be implemented and delivered

● Traceability: Each system function can be traced to a
corresponding set of functional requirements

Characteristics of Requirements

35-100

According to IEEE Std 829-1998:
● Test Case Specification: “(A) A set of test inputs, execution

conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to
verify compliance with a specific requirement.
(B) A document specifying inputs, predicted results, and a set of
execution conditions for a test item”

Test Cases Definition

36-100

• Functional testing: Deriving test cases from
program specifications

• Functional refers to the source of information used in test case
design, not to what is tested

• Also known as:
– specification-based testing (from specifications)

– black-box testing (no view of the code)

• Functional specification = description of
intended program behavior
– either formal or informal

Functional Testing

(c) 2007 Mauro Pezzè & Michal Young

37-100

• Functional testing uses the specification (formal
or informal) to partition the input space
– E.g., specification of “roots” program suggests division

between cases with zero, one, and two real roots

• Test each category, and boundaries between
categories
– No guarantees, but experience suggests failures often lie at the

boundaries (as in the “roots” program)

Functional testing: exploiting the specification

(c) 2007 Mauro Pezzè & Michal Young

38-100

• The base-line technique for designing test cases
– Timely

• Often useful in refining specifications and assessing testability
before code is written

– Effective
• finds some classes of fault (e.g., missing logic) that can elude

other approaches

– Widely applicable
• to any description of program behavior serving as spec
• at any level of granularity from module to system testing.

– Economical
• typically less expensive to design and execute than structural

(code-based) test cases

Why functional Tests?

(c) 2007 Mauro Pezzè & Michal Young

39-100

• Program code is not necessary
– Only a description of intended behavior is needed
– Even incomplete and informal specifications can be used

• Although precise, complete specifications lead to better test
suites

• Early functional test design has side benefits
– Often reveals ambiguities and inconsistency in spec
– Useful for assessing testability

• And improving test schedule and budget by improving spec

– Useful explanation of specification
• or in the extreme case (as in XP), test cases are the spec

Early Functional Test Design

(c) 2007 Mauro Pezzè & Michal Young

40-100

• Functional test applies at all granularity levels:
– Unit (from module interface spec)
– Integration (from API or subsystem spec)
– System (from system requirements spec)
– Regression (from system requirements + bug history)

• Structural (code-based) test design applies to
relatively small parts of a system:
– Unit

– Integration

• Functional testing is best for missing logic faults
– A common problem: Some program logic was simply forgotten

– Structural (code-based) testing will never focus on code that isn’t
there!

Functional vs structural test: granularity levels

(c) 2007 Mauro Pezzè & Michal Young

41-100

1. Decompose the specification
– If the specification is large, break it into

independently testable features to be
considered in testing

2. Select representatives
– Representative values of each input, or

Representative behaviors of a model
– Often simple input/output transformations

don’t describe a system. We use models in
program specification, in program design, and
in test design

3. Form test specifications
– Typically: combinations of input values, or

model behaviors

4. Produce and execute actual
tests

Steps: from specifications to test cases

(c) 2007 Mauro Pezzè & Michal Young

42-100

Steps: from specifications to test cases: example

Derive Independently Testable Features: identify
features that can be tested separately
Examples: a search functionality on a web application
or addition of new users this may map to different →
levels at the design and code level

NOTE: this helps
also in determining if
there are
requirements that
are not testable or
need to be rewritten
or clarified!

Derive Representative values OR a model that can
be used to derive test cases. Note that this phase is
mostly enumeration of values in isolation. Example:
considering empty list or a one element list as
representative cases

Generation of test case specification based on the
previous step, usually based on the Cartesian product
from the enumeration values (considering feasible
cases). Example: the search functionality,
representative values might be 0,1, many characters
and 0,1, many special characters, but the case
{0,many} is clearly impossible

43-100

Example One: using category partitioning

Using combinatorial testing (category partition) from the
specifications

• We are building a catalogue of computer components in which
customers can select the different parts and assemble their PC for
delivery

• A model identifies a specific product and determines a set of
constraints on available components

• A set of (slot, component) pairs, corresponding to the required and
optional slots of the model. A component might be empty for
optional slots

44-100

Parameter Model
– Model number
– Number of required slots for selected model (#SMRS)
– Number of optional slots for selected model (#SMOS)

Parameter Components
– Correspondence of selection with model slots
– Number of required components with selection ≠ empty
– Required component selection
– Number of optional components with selection ≠ empty
– Optional component selection

Environment element: Product database
– Number of models in database (#DBM)
– Number of components in database (#DBC)

Step 1: Identify independently testable units

(c) 2007 Mauro Pezzè & Michal Young

45-100

Model number
Malformed

Not in database

Valid

Number of required slots for selected model (#SMRS)
0

1

Many

Number of optional slots for selected model (#SMOS)
0

1

Many

Step 2: Identify relevant values: Component (1/3)

(c) 2007 Mauro Pezzè & Michal Young

46-100

Correspondence of selection with model
slots
Omitted slots
Extra slots
Mismatched slots
Complete correspondence

Number of required components with
non empty selection
0
< number required slots
= number required slots

Required component selection
Some defaults
All valid
≥ 1 incompatible with slots
≥ 1 incompatible with another selection

≥ 1 incompatible with model

≥ 1 not in database

Number of optional
components with non empty
selection
0

< #SMOS

= #SMOS

Optional component selection
Some defaults

All valid
≥ 1 incompatible with slots

≥ 1 incompatible with another
selection

≥ 1 incompatible with model

≥ 1 not in database

Step 2: Identify relevant values: Component (2/3)

(c) 2007 Mauro Pezzè & Michal Young

47-100

Number of models in database (#DBM)
0

1

Many

Number of components in database (#DBC)
0

1

Many

Note 0 and 1 are unusual (special) values. They might cause
unanticipated behavior alone or in combination with particular
values of other parameters.

Step 2: Identify relevant values: Component (3/3)

(c) 2007 Mauro Pezzè & Michal Young

48-100

● A combination of values for each category
corresponds to a test case specification
– in the example we have 314.928 test cases
– most of which are impossible!

● example
zero slots and at least one incompatible slot

● Introduce constraints to
– rule out impossible combinations
– reduce the size of the test suite if too large

Step 3: Introduce constraints

(c) 2007 Mauro Pezzè & Michal Young

49-100

[Error] indicates a value class that
– corresponds to a erroneous values
– need be tried only once

Example

Model number: Malformed and Not in database

error value classes
– No need to test all possible combinations of errors
– One test is enough (we assume that handling an error case

bypasses other program logic)

Step 3: error constraint

(c) 2007 Mauro Pezzè & Michal Young

50-100

Model number
Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]
Complete correspondence

Number of required comp. with non empty selection
0 [error]
< number of required slots [error]

Required comp. selection
≥ 1 not in database [error]

Number of models in database (#DBM)
0 [error]

Number of components in database (#DBC)
0 [error]

Error constraints
reduce test suite
from 314.928 to
2.711 test cases

Example - Step 3: error constraint

(c) 2007 Mauro Pezzè & Michal Young

51-100

constraint [property] [if-property] rule out invalid combinations
of values

[property] groups values of a single parameter to identify
subsets of values with common properties

[if-property] bounds the choices of values for a category that
can be combined with a particular value selected for a
different category

Example

combine
Number of required comp. with non empty selection = number required slots

[if RSMANY]

only with

Number of required slots for selected model (#SMRS) = Many [Many]

Step 3: property constraints

(c) 2007 Mauro Pezzè & Michal Young

52-100

Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection
0 [if RSNE] [error]
< number required slots [if RSNE] [error]
= number required slots [if RSMANY]

Number of optional comp. with non empty selection
< number required slots [if OSNE]
= number required slots [if OSMANY]

from 2.711 to
908 test cases

Example - Step 3: property constraints

(c) 2007 Mauro Pezzè & Michal Young

53-100

[single] indicates a value class that test designers
choose to test only once to reduce the number
of test cases

Example
value some default for required component selection
and optional component selection may be tested only
once despite not being an erroneous condition

note -
single and error have the same effect but differ in
rationale. Keeping them distinct is important for
documentation and regression testing

Step 3 (cont): single constraints

(c) 2007 Mauro Pezzè & Michal Young

54-100

from 908 to
69 test
cases

Number of required slots for selected model (#SMRS)
0 [single]

1 [property RSNE] [single]

Number of optional slots for selected model (#SMOS)
0 [single]

1 [single] [property OSNE]

Required component selection
Some default [single]

Optional component selection
Some default [single]

Number of models in database (#DBM)
1 [single]

Number of components in database (#DBC)
1 [single]

Example - Step 3: single constraints

(c) 2007 Mauro Pezzè & Michal Young

55-100

Parameter Model
● Model number

– Malformed [error]
– Not in database [error]
– Valid

● Number of required slots for selected model (#SMRS)
– 0 [single]
– 1 [property RSNE] [single]
– Many [property RSNE] [property RSMANY]

● Number of optional slots for selected model (#SMOS)
– 0 [single]
– 1 [property OSNE] [single]
– Many [property OSNE] [property OSMANY]

Environment Product data base
● Number of models in database (#DBM)

– 0 [error]
– 1 [single]
– Many

● Number of components in database (#DBC)
– 0 [error]
– 1 [single]
– Many

Parameter Component
● Correspondence of selection with model slots

– Omitted slots [error]
– Extra slots [error]
– Mismatched slots [error]
– Complete correspondence

● # of required components (selection empty)
– 0 [if RSNE] [error]
– < number required slots [if RSNE] [error]
– = number required slots [if RSMANY]

● Required component selection
– Some defaults [single]
– All valid

≥ 1 incompatible with slots
≥ 1 incompatible with another selection
≥ 1 incompatible with model
≥ 1 not in database [error]

● # of optional components (selection empty)
– 0
– < #SMOS [if OSNE]
– = #SMOS [if OSMANY]

● Optional component selection
– Some defaults [single]
– All valid

� ≥ 1 incompatible with slots
� ≥ 1 incompatible with another selection
� ≥ 1 incompatible with model
� ≥ 1 not in database [error]

Example - Summary

(c) 2007 Mauro Pezzè & Michal Young

56-100

Example Two: Deriving a model
Maintenance: The Maintenance function records the history of items undergoing
maintenance.

• If the product is covered by warranty or maintenance contract, maintenance can be
requested either by calling the maintenance toll free number, or through the web site, or
by bringing the item to a designated maintenance station.

• If the maintenance is requested by phone or web site and the customer is a US or EU
resident, the item is picked up at the customer site, otherwise, the customer shall ship the
item with an express courier.

• If the maintenance contract number provided by the customer is not valid, the item follows
the procedure for items not covered by warranty.

• If the product is not covered by warranty or maintenance contract, maintenance can be
requested only by bringing the item to a maintenance station. The maintenance station
informs the customer of the estimated costs for repair. Maintenance starts only when the
customer accepts the estimate.

• If the customer does not accept the estimate, the product is returned to the customer.
• Small problems can be repaired directly at the maintenance station. If the maintenance

station cannot solve the problem, the product is sent to the maintenance regional
headquarters (if in US or EU) or to the maintenance main headquarters (otherwise).

• If the maintenance regional headquarters cannot solve the problem, the product is sent to
the maintenance main headquarters.

• Maintenance is suspended if some components are not available.
• Once repaired, the product is returned to the customer.

Multiple choices in the first
step ...

... determine the possibilities
for the next step ...

... and so on ...

From an informal specification:

(c) 2007 Mauro Pezzè & Michal Young

57-100

Example Two: Deriving a model
To a finite state machine:

(c) 2007 Mauro Pezzè & Michal Young

58-100

Example Two: Deriving a model
To a test suite:

(c) 2007 Mauro Pezzè & Michal Young

59-100

Example Two: Deriving a model
Using transition coverage:

Using transition
coverage: Every
transition between
states should be
traversed
by at least one test
case

(c) 2007 Mauro Pezzè & Michal Young

Does history matter? That
is the order in which we
traverse a node influences
the functionality? (e.g. see
wait for completion)

60-100

In the Agile context, the problem of functional testing has been addressed
by having user stories and acceptance tests in collaboration with
customers, constantly updated and runnable

A complementary point of view (1/5)

User Stories

Architectural
Spike

Release
Planning

Iteration
Acceptance

Tests
Small

Releases

Spike

Exploration Phase Planning Phase Iterations to Release Phase Productionizing Phase

requirements

Test scenarios

bugs

next
iteration

latest
version

customer
approval

system
metaphor

uncertain
estimates

confident
estimates

release
plan

eXtreme Programming (XP) process

61-100

A complementary point of view (2/5)
Using Fitnesse to write acceptance tests so that the
customer can actually write the acceptance conditions
for the software

looking at our previous example the “root” case

That we solve by means of

ax2+bx+c=0

x=
−b±√b2−4 ac

2a

62-100

A complementary point of view (3/5)
public class Root {
 double rootOne, rootTwo;
 int numRoots;
 public Root (double a, double b, double c){
 double q;
 double r;
 q = b*b - 4 * a *c;
 if (q >0 && a != 0){
 // if b^2 > 4ac there are two dinstict roots
 numRoots = 2;
 r = (double) Math.sqrt(q);
 rootOne = ((0-b) + r) / (2*a);
 rootTwo = ((0-b) - r) / (2*a);
 } else if (q==0){ // DEFECT HERE
 numRoots = 1;
 rootOne = (0-b)/(2*a);
 rootTwo = rootOne;
 }else {
 // equation had no roots if b^2<4ac
 numRoots = 0;
 rootOne = -1;
 rootTwo = -1;
 }
 }
}

Source code from Mauro Pezzè & Michal Young

63-100

A complementary point of view (4/5)
Our first attempt returns the number of solutions, but the customer did not
want only this – so this is a mistake we would not have captured with unit
tests

The customer also wanted the solutions to the equation, however this
opens other discussions how should we deal with no solutions? What →
about imaginary numbers?

64-100

A complementary point of view (5/5)
Running with a=0 reports the mistake and also opens up a discussion about
the format for returning the solutions and what were the original
requirements in these cases

65-100

Software Testing Risk Analysis

66-100

• It is not feasible to test everything in a
software system

• We need some ways to prioritize which parts to
test more thoroughly
– One way is to use the so-called risk-based testing: prioritizing

test cases based on risks

– This is a business-driven decision based on the possible
damage that a defect may cause

Risk-based Testing

67-100

What is a Risk

https://www.cs.tut.fi/tapahtumat/testaus04/schaefer.pdf

• financial, loss
of (faith of)
clients, damage
to corporate
identity

• impact on other
functions or
systems

• detection and
repair time

Risk = damage * probability

68-100

• What if we can reduce risks non-linearly with
the testing effort?

Risk-based Testing

“A Strategy for Risk-Based Testing”, https://www.stickyminds.com/article/strategy-risk-based-testing

69-100

• Risk analysis deals with the identification of the risks
(damage and probabilities) in the software testing
process and in the prioritization of the test cases

• We usually start from a Test Plan:
“A document describing the scope, approach, resources, and
schedule of intended test activities. It identifies test items, the
features to be tested, the testing tasks, who will do each task,
and any risks requiring contingency planning” (IEEE-829-2008)

Risk Analysis

70-100

• IEEE Std 829-2008 (IEEE Standard for Software and System Test
Documentation) is the main standard for Software Testing
documentation

• It revolves around the idea
of integrity levels of software
components that influence the
level of testing tasks to be
provided

IEEE Std 829-2008

71-100

• Description of integrity levels and consequences of failures

IEEE Std 829-2008 Example (1/2)

72-100

• Risk Assessment for each function/component

IEEE Std 829-2008 Example (2/2)

• Depending on the identified level, the standard suggests specific nr. of
test documents (e.g. level 4 suggests 10: 1. Master Test Plan, 2. Level
Test Plan, 3. Level Test Design, 4. Level Test Case, 5. Level Test
Procedure, 6. Level Test Log, 7.Anomaly Report, 8. Level Interim Test
Status Report, 9. Level Test Report, 10. Master Test Report)

• level test documents are usually related to a. Unit Test Plan, b.
Integration Test Plan, c. System Test Plan, d. Acceptance Test Plan

73-100

• IEEE 829-2008 provides indications for the testing
documentation for more heavy-weight processes

• It can still be useful in an agile context if applied partially,
to get an idea about which documents/information might
still be useful to plan the testing process

• It provides also a context in which to apply risk-based
testing, to prioritize/enhance testing for parts of the system
depending on potential damage & probability of failure

IEEE Std 829-2008 & Agile?

Chen, Ning. "IEEE std 829-2008 and Agile Process-Can They Work Together?." Proceedings of the International Conference on
Software Engineering Research and Practice (SERP). The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), 2013.

74-100

Specific Issues in Testing Object
Oriented Software

75-100

● Procedural software
– unit = single program, function, or procedure

more often: a unit of work that may correspond to one or more
intertwined functions or programs

● Object oriented software
– unit = class or (small) cluster of strongly related classes

(e.g., sets of Java classes that correspond to exceptions)
– unit testing = intra-class testing
– integration testing = inter-class testing (cluster of classes)

→ dealing with single methods separately is usually too expensive
(complex scaffolding), so methods are usually tested in the
context of the class they belong to

 Ch 15, slide 75

OO definitions of unit and integration testing

(c) 2007 Mauro Pezzè & Michal Young

76-100

• The Unit in Unit Testing is usually a class, however,
there are specific issues that need to be taken into
account when considering OO:

– State dependent behavior

– Encapsulation

– Inheritance

– Polymorphism and dynamic binding

– Abstract and generic classes

– Exception handling

“Unit” in Unit Testing

(c) 2007 Mauro Pezzè & Michal Young

77-100

 abstract class Credit {
...
 abstract boolean validateCredit(Account a, int amt, CreditCard c);
...
}

USAccount
UKAccount
EUAccount
JPAccount
OtherAccount

EduCredit
BizCredit
IndividualCredit

VISACard
AmExpCard
StoreCard

The combinatorial problem: 3 x 5 x 3 = 45 possible combinations
of dynamic bindings (just for this one method!)

“Isolated” calls: the combinatorial explosion problem

(c) 2007 Mauro Pezzè & Michal Young

78-100

Account Credit creditCard

USAccount EduCredit VISACard

USAccount BizCredit AmExpCard

USAccount individualCredit ChipmunkCard

UKAccount EduCredit AmExpCard

UKAccount BizCredit VISACard

UKAccount individualCredit ChipmunkCard

EUAccount EduCredit ChipmunkCard

EUAccount BizCredit AmExpCard

EUAccount individualCredit VISACard

JPAccount EduCredit VISACard

JPAccount BizCredit ChipmunkCard

JPAccount individualCredit AmExpCard

OtherAccount EduCredit ChipmunkCard

OtherAccount BizCredit VISACard

OtherAccount individualCredit AmExpCard

Identify a set of
combinations that cover
all pairwise combinations
of dynamic bindings

The combinatorial approach

(c) 2007 Mauro Pezzè & Michal Young

79-100

public abstract class Account { ...
 public int getYTDPurchased() {

if (ytdPurchasedValid) { return ytdPurchased; }
int totalPurchased = 0;
for (Enumeration e = subsidiaries.elements() ;
e.hasMoreElements();)
 { Account subsidiary = (Account) e.nextElement();
totalPurchased += subsidiary.getYTDPurchased();
 }
for (Enumeration e = customers.elements();
e.hasMoreElements();)
 { Customer aCust = (Customer) e.nextElement();
totalPurchased += aCust.getYearlyPurchase();
 }
ytdPurchased = totalPurchased;
ytdPurchasedValid = true;
return totalPurchased;

 } … }

Problem:
different implementations of
methods getYDTPurchased
refer to different currencies.

Combined calls: undesired effects

(c) 2007 Mauro Pezzè & Michal Young

80-100

public abstract class Account {
...
 public int getYTDPurchased() {

if (ytdPurchasedValid) { return ytdPurchased; }
int totalPurchased = 0;
for (Enumeration e = subsidiaries.elements() ; e.hasMoreElements();)
 {

Account subsidiary = (Account) e.nextElement();
totalPurchased += subsidiary.getYTDPurchased();

 }
for (Enumeration e = customers.elements(); e.hasMoreElements();)
 {

Customer aCust = (Customer) e.nextElement();
totalPurchased += aCust.getYearlyPurchase();

 }
ytdPurchased = totalPurchased;
ytdPurchasedValid = true;
return totalPurchased;

 }
…
}

step 1: identify polymorphic
calls, binding sets, defs and
uses

totalPurchased
used and defined

totalPurchased
used and defined

totalPurchased defined

totalPurchased usedtotalPurchased used

A Data Flow Approach

(c) 2007 Mauro Pezzè & Michal Young

81-100

● Derive a test case for each possible
polymorphic <def,use> pair
– Each binding must be considered individually
– Pairwise combinatorial selection may help in reducing the set

of test cases

● Example: Dynamic binding of currency
– We need test cases that bind the different calls to different

methods in the same run
– We can reveal faults due to the use of different currencies in

different methods

Def-Use (dataflow) testing of polymorphic calls

(c) 2007 Mauro Pezzè & Michal Young

82-100

● When testing a subclass ...
– We would like to re-test only what has not been thoroughly

tested in the parent class
● for example, no need to test hashCode and getClass methods

inherited from class Object in Java

– But we should test any method whose behavior may have
changed

● even accidentally!

Inheritance

(c) 2007 Mauro Pezzè & Michal Young

83-100

● Track test suites and test executions
– determine which new tests are needed
– determine which old tests must be re-executed

● New and changed behavior ...
– new methods must be tested
– redefined methods must be tested, but we can partially reuse

test suites defined for the ancestor
– other inherited methods do not have to be retested

Reusing Tests with the Testing History Approach

(c) 2007 Mauro Pezzè & Michal Young

84-100

Testing history

(c) 2007 Mauro Pezzè & Michal Young

85-100

Inherited, unchanged

(c) 2007 Mauro Pezzè & Michal Young

86-100

Newly introduced methods

(c) 2007 Mauro Pezzè & Michal Young

87-100

Overridden methods

(c) 2007 Mauro Pezzè & Michal Young

88-100

● Abstract methods (and classes)
– Design test cases when abstract method is introduced (even if

it can’t be executed yet)

● Behavior changes
– Should we consider a method “redefined” if another new or

redefined method changes its behavior?
● The standard “testing history” approach does not do this
● It might be reasonable combination of data flow (structural) OO

testing with the (functional) testing history approach

Testing history – some details

(c) 2007 Mauro Pezzè & Michal Young

89-100

Testing History - Summary

(c) 2007 Mauro Pezzè & Michal Young

90-100

● Executing test cases should (usually) be cheap
– It may be simpler to re-execute the full test suite of the

parent class
– ... but still add to it for the same reasons

● But sometimes execution is not cheap ...
– Example: Control of physical devices
– Or very large test suites

● Ex: Some Microsoft product test suites require more than one
night (so daily build cannot be fully tested)

– Then some use of testing history is profitable

Does Testing History help?

(c) 2007 Mauro Pezzè & Michal Young

91-100

A generic class

class PriorityQueue<Elem Implements Comparable> {...}

is designed to be instantiated with many different parameter types

PriorityQueue<Customers>

PriorityQueue<Tasks>

A generic class is typically designed to behave consistently
some set of permitted parameter types.

Testing can be broken into two parts
– Showing that some instantiation is correct
– showing that all permitted instantiations behave consistently

Testing Generic Classes

(c) 2007 Mauro Pezzè & Michal Young

92-100

● Design tests as if the parameter were copied
textually into the body of the generic class.
– We need source code for both the generic class and the

parameter class

Show that some instantiation is correct

(c) 2007 Mauro Pezzè & Michal Young

93-100

● Identify potential interactions between generic
and its parameters
– Identify potential interactions by inspection or analysis, not

testing
– Look for: method calls on parameter object, access to

parameter fields, possible indirect dependence
– Easy case is no interactions at all (e.g., a simple container

class)

● Where interactions are possible, they will need
to be tested

Identify (possible) interactions

(c) 2007 Mauro Pezzè & Michal Young

94-100

class PriorityQueue
<Elem implements Comparable> {...}

● Priority queue uses the “Comparable” interface
of Elem to make method calls on the generic
parameter

● We need to establish that it does so
consistently
– So that if priority queue works for one kind of Comparable

element, we can have some confidence it does so for others

Example Interaction

(c) 2007 Mauro Pezzè & Michal Young

95-100

● We can’t test every possible instantiation
– Just as we can’t test every possible program input

● ... but there is a contract (a specification)
between the generic class and its parameters
– Example: “implements Comparable” is a specification of

possible instantiations
– Other contracts may be written only as comments

● Functional (specification-based) testing
techniques are appropriate
– Identify and then systematically test properties implied by the

specification

Testing variation in instantiation

(c) 2007 Mauro Pezzè & Michal Young

96-100

Most but not all classes that implement Comparable also satisfy the
rule

(x.compareTo(y) == 0) == (x.equals(y))
(from java.lang.Comparable)

So test cases for PriorityQueue should include
● instantiations with classes that do obey this rule:

class String
● instantiations that violate the rule:

class BigDecimal with values 4.0 and 4.00

Example: Testing variation in instantiation

(c) 2007 Mauro Pezzè & Michal Young

97-100

void addCustomer(Customer theCust) {
customers.add(theCust);

 }
 public static Account

newAccount(...)
throws InvalidRegionException

 {
Account thisAccount = null;
String regionAbbrev = Regions.regionOfCountry(
 mailAddress.getCountry());
if (regionAbbrev == Regions.US) {
 thisAccount = new USAccount();
} else if (regionAbbrev == Regions.UK) {

} else if (regionAbbrev == Regions.Invalid) {
 throw new InvalidRegionException(mailAddress.getCountry());
}

...
 }

exceptions
create implicit
control flows
and may be
handled by
different
handlers

Exception handling

(c) 2007 Mauro Pezzè & Michal Young

98-100

● Impractical to treat exceptions like normal
flow

● too many flows: every array subscript reference, every memory
allocation, every cast, ...

● multiplied by matching them to every handler that could appear
immediately above them on the call stack.

● many actually impossible

● So we separate testing exceptions
● and ignore program error exceptions (test to prevent them, not

to handle them)

● What we do test: Each exception handler, and
each explicit throw or re-throw of an exception

Testing Exception Handling

(c) 2007 Mauro Pezzè & Michal Young

99-100

● Local exception handlers
– test the exception handler (consider a subset of points bound

to the handler)

● Non-local exception handlers
– Difficult to determine all pairings of <points, handlers>
– So enforce (and test for) a design rule:

if a method propagates an exception, the method call should
have no other effect

Testing program exception handlers

(c) 2007 Mauro Pezzè & Michal Young

100-100

Most of the source code examples, class diagrams, etc... from [2] if not
differently stated

[1] A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic
Debugging, 2 edition. Amsterdam ; Boston: Morgan Kaufmann, 2009. 

[2] M. Pezzè and M. Young, Software Testing And Analysis: Process,
Principles And Techniques. Hoboken, N.J.: John Wiley & Sons Inc, 2007.

About risk-based testing:
https://www.cs.tut.fi/tapahtumat/testaus04/schaefer.pdf

IEEE Std 829-2008:
“IEEE Standard for Software and System Test Documentation,” IEEE Std
829-2008, pp. 1–150, Jul. 2008. DOI: 10.1109/IEEESTD.2008.4578383

Acceptance Testing example using Fitnesse (www.fitnesse.org)

References

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Sensitivity: better to fail every time than sometimes
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Redundancy: making intentions explicit
	Slide 24
	Restriction: making the problem easier
	Slide 26
	Partition: divide and conquer
	Slide 28
	Slide 29
	Visibility: Judging status
	Slide 31
	Feedback: tuning the development process
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Step 1: Identify independently testable units
	Step 2: Identify relevant values: Model
	Step 2: Identify relevant values: Component
	Step 2: Identify relevant values: Database
	Step 3: Introduce constraints
	Step 3: error constraint
	Example - Step 3: error constraint
	Step 3: property constraints
	Example - Step 3: property constraints
	Step 3 (cont): single constraints
	Example - Step 3: single constraints
	Check configuration – Summary
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	OO definitions of unit and integration testing
	Slide 76
	“Isolated” calls: the combinatorial explosion problem
	The combinatorial approach
	Combined calls: undesired effects
	A data flow approach
	Def-Use (dataflow) testing of polymorphic calls
	Inheritance
	Reusing Tests with the Testing History Approach
	Testing history
	Inherited, unchanged
	Newly introduced methods
	Overridden methods
	Testing History – some details
	Testing History - Summary
	Does testing history help?
	Testing generic classes
	Show that some instantiation is correct
	Identify (possible) interactions
	Example interaction
	Testing variation in instantiation
	Example: Testing instantiation variation
	Exception handling
	Testing exception handling
	Testing program exception handlers
	Slide 100

