
LAB		OF		SOFTWARE		ARCHITECTURES	
AND		INFORMATION		SYSTEMS	
	
FACULTY		OF		INFORMATICS	
MASARYK		UNIVERSITY,		BRNO	

AND		CONFLICTS		BETWEEN		THEM	

Barbora	Bühnová	
buhnova@fi.muni.cz	

	
FOCUS		ON		QUALITY		ATTRIBUTES	

Where	do	we	stand?	

We	already	understand	many	topics,	including:	

• Clean	code	principles	
•  Four	rules	of	simple	design	(Tests	pass,	No	duplication,	etc.)	
•  SOLID	(Single	responsibility,	Open/closed,	Liskov	substitution,	etc.)	
•  GRASP	(High	cohesion,	Low	coupling,	Polymorphism,	etc.)	

• Bad	code	smells	
•  Abstraction	levels,	dependencies,	cohesion,	naming	conventions,	etc.	

• Refactoring	
• When,	where	and	how	

• Unit	testing	

©	B.	Bühnová,	PV260	Software	Quality	

What	"quality"	means	to	you?	
…	and	your	customer?	

																									…	and	your	manager?	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Our big five

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Bad	code	smells	for	Performance	

• Let’s	assume	our	code	is	perfectly	CLEAN	

• What	about	performance?	
Are	there	any	performance	code	smells	we	could	check	for?	
	

Let’s	discuss	four	performance	smells:	

• Smell	#1:	Redundant	Work	

• Smell	#2:	One	by	One	Processing	

• Smell	#3:	Long	Critical	Section	

• Smell	#4:	Busy	Waiting	

©	B.	Bühnová,	PV260	Software	Quality	

Motivating	example	#1:	Fibonacci	Sequence	

•  1,	1,	2,	3,	5,	8,	13,	21,	…	

• Fib(0)	=	Fib(1)	=	1	
Fib(n+2)	=	Fib(n+1)	+	Fib(n)					where	n≥0	
			

In	Java:	

©	Patrycja	Wegrzynowicz	[2]	

	
public	int	fibonacci(int	n)	{	
		if(n	<=	1)	return	1;	
		return	fibonacci(n-1)	+	fibonacci(n-2);	
}	

Smell	#1:	Redundant	Work	

• Description	
•  A	time-consuming	method	computes	the	same	many	times	in	a	single	
execution	path	

• Consequences	
•  A	slower	execution	time	since	the	time-consuming	operation	is	
performed	multiple	times	

• Solution	
•  Call	the	heavy	method	only	once	and	store	the	result	for	further	reuse	
	

Note:	Applies	also	in	more	complex	scenarios,	such	as	caching	of	database	
results	in	distributed	systems.	

©	Patrycja	Wegrzynowicz	[2]	

Example	#1:	Fibonacci	refactored	

©	Patrycja	Wegrzynowicz	[2]	

Map<Integer,Integer>	cache1	=	new	HashMap<Integer,Integer>();	
	
long	fibonacci(int	n)	{	
		if	(cache1.containsKey(n))	
				return	cache1.get(n);	
		if	(n==0	||	n==1)	{	
				int	var1	=	1;	
				cache1.put(n,	var1);	
				return	var1;	
		}	
		int	var2	=	fibonacci(n-1)	+	fibonacci(n-2);	
		cache1.put(n,	var2);	
		return	var2;	
}	

Motivating	example	#2:	Search	

©	Patrycja	Wegrzynowicz	[2]	

private	ArrayList<Item>	list	=	new	ArrayList<Item>();	
	
List<Item>	findGreaterThan(int	value)	{	
		List<Item>	ret	=	new	ArrayList<Item>();	
			
		for	(Item	item	:	list)	{	
				if	(item.isGreaterThan(value))	{	
						ret.add(item);	
				}	
		}	
		return	ret;	
}	

Smell	#2:	One	by	One	Processing	

• Description	
•  Overused	linear	search/processing	

• Consequences	
•  Slower	performance	

• Solution	
•  Use	smarter	algorithms	and/or	data	structures	(binary	search,	sorted	
collections,	map	with	precomputed	search	predicates)		
	

Note:	Become	familiar	with	the	performance	of	operations	you	execute	on	
different	types	of	data	structures.	And	think	about	the	complexity	of	your	
algorithms.	

©	Patrycja	Wegrzynowicz	[2]	

Example	#2:	Search	refactored	

©	Patrycja	Wegrzynowicz	[2]	

private	List<Item>	list	=	new	ArrayList<Item>();	
private	List<Item>	var1	=	new	SortedList<Item>(...);	
	
...	
	
List<Item>	findGreaterThan(int	value)	{	
		return	subList(var1,	value);	
}	

Motivating	example	#3:	Password	Cracking	

©	Patrycja	Wegrzynowicz	[2]	

static	List<String>	passwordsToCheck;	
	
//	launch	100	threads	and	FOR	each	thread	
void	run()	{	
		while	(!passwordsToCheck.isEmpty())	{	
				synchronized(passwordsToCheck)	{	
						if	(!passwordsToCheck.isEmpty())	{	
								String	pwd	=	passwordsToCheck.remove(0);	
								checkPassword(pwd);	
						}	
				}	
		}	
}	
void	checkPassword()	{	...	}	

Smell	#3:	Long	Critical	Section	

• Description	
•  Unnecessary	code	performed	in	a	critical	section	

• Consequences	
•  More	like	single-threaded	model	

• Solution	
•  Move	the	code	outside	the	critical	section	
	

Note:	Sometimes	it	is	favorable	to	use	multiple	locks	within	a	class	to	enable	
partial	locking	of	an	object.	See	an	example	below.	

©	Patrycja	Wegrzynowicz	[2]	

Example	#3:	Password	Cracking	refactored	

©	Patrycja	Wegrzynowicz	[2]	

static	List<String>	passwordsToCheck;	
	
//	launch	100	threads	and	FOR	each	thread	
void	run()	{	
		while	(!passwordsToCheck.isEmpty())	{	
				synchronized(passwordsToCheck)	{	
						if	(!passwordsToCheck.isEmpty())	{	
								String	pwd	=	passwordsToCheck.remove(0);	
						}	
				}	
				checkPassword(pwd);	
		}	
}	
void	checkPassword()	{	...	}	

Example	#3.b:	Multiple	locks	within	a	class	

©	B.	Bühnová,	PV260	Software	Quality	

public	class	MyUpdater	{	
		private	long	var1	=	0;	
		private	long	var2	=	0;	
	
	public	void	updateVar1()	{	
				synchronized(this)	{	
						//	update	var1	
				}	
		}	
		public	void	updateVar2()	{	
				synchronized(this)	{	
						//	update	var2	
				}	
		}	
}	
			

		...	
		private	Object	lock1	=	new	Object();	
		private	Object	lock2	=	new	Object();	
	
		public	void	updateVar1()	{	
				synchronized(lock1)	{	
						//	update	var1	
				}	
		}	
		public	void	updateVar2()	{	
				synchronized(lock2)	{	
						//	update	var2	
				}	
		}	
		...	

Smell	#4:	Busy	Waiting	

• Description	
•  Repeatedly	checking	if	something	interesting	happened		
(e.g.	value	changed,	user	input	arrived).	

• Consequences	
•  A	lot	of	work	with	mostly		
no	value,	slowing	down		
the	system	

• Solution	
•  Hollywood	principle:	
“Don't	call	us,	we'll	call	you.”	

•  Observer	pattern		
(Gang	of	Four	book)	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Bad	smells	(beliefs)	for	Scalability	

•  Smell	#1:	Distribution	improves	performance	
•  Not	always.	Distributed	systems	must	use	network	I/O,	more	CPU	to	
maintain	coherence,	partitioning	and	replication.	

•  Smell	#2:	Just	performance	
•  If	you	want	to	get	distributed,	there	are	many	lessons	to	learn	in	reliability,	
maintainability,	security,	testability,	and	many	other	domains.	

•  Smell	#3:	My	framework	takes	care	of	it	
	

• Distributed	applications	must	address	many	new	concerns:	
•  State	sharing	
•  Data	consistency	
•  Caching	

Fowler’s	First	Law	of	Distributed	Object	Design:	Don't	distribute	your	objects.	
Advice:	Better	clean	up	your	application	and	stay	local,	if	you	can.	

©	B.	Bühnová,	PV260	Software	Quality	

•  Load	balancing	
•  Failure	management	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Bad	code	smells	for	Reliability	

• Smell	#1:	Input	Kludge	
•  Check	all	inputs	for	validity!	On	all	user	interfaces	and	service	interfaces.	

• Smell	#2:	Blind	Faith	
•  Do	not	trust	others	(limit	access	to	your	code,	check	bug	fixes),		
nor	yourself	(check	the	correctness	of	your	results).	

• Smell	#3:	Poorly	Handled	Exceptions	

• Smell	#4:	Unguarded	Sequential	Coupling	
•  Assumptions	on	the	right	ordering	of	method	calls	without	control.	

• Smell	#5:	Fashionable	Coding	
•  Usage	of	all	the	new	cool	technologies	and	constructs		
you	do	not	really	understand.	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Bad	code	smells	for	Testability	

• Smell	#1:	Global	State	
•  Do	not	allow	your	objects	to	communicate	secretly.	

• Smell	#2:	Lack	of	Dependency	Injection	
•  Make	your	dependencies	explicit.	

• Smell	#3:	Law	of	Demeter	violation	
•  Only	talk	to	your	immediate	friends.	

• Smell	#4:	Misplaced	and	Hard	Coded	new	Operator	
•  Do	not	mix	factory	and	service	code.	

Note:	In	over	90%	of	cases,	Global	State	is	the	problem.	

General	advice:	If	your	code	is	difficult	to	test,	do	not	ask	how	to	
hack	it,	but	what	is	wrong	with	that	code!	

©	B.	Bühnová,	PV260	Software	Quality	

Motivating	example	#1:	Secret	Communication	

©	Miško	Hevery	[4]	

	
class	X	{	
		...	
		X()	{	...	}	
	
		public	int	doSomething()	{	...	}	
}	
	
int	a	=	new	X().doSomething();	
int	b	=	new	X().doSomething();	

Motivating	example	#1:	Secret	Communication	

©	Miško	Hevery	[4]	

	
class	X	{	
		...	
		X()	{	...	}	
	
		public	int	doSomething()	{	...	}	
}	
	
int	a	=	new	X().doSomething();	
int	b	=	new	X().doSomething();	

Does	a==b	??	

Motivating	example	#1:	Secret	Communication	

©	Miško	Hevery	[4]	

	
	
	
a	=	new(X)	à	
	
	
	
	
	
b	=	new(X)	à		

X	

Y	

Q	

Z	

X	

Y	

Q	

Z	

Motivating	example	#1:	Secret	Communication	

©	Miško	Hevery	[4]	

	
	
	
a	=	new(X)	à	
a.doSomething()	
	
	
	
	
b	=	new(X)	à		
b.doSomething()	

a==b		✔	

X	

Y	

Q	

Z	

X	

Y	

Q	

Z	

Motivating	example	#1:	Secret	Communication	

©	Miško	Hevery	[4]	

	
	
	
a	=	new(X)	à	
a.doSomething()	
	
	
	
	
b	=	new(X)	à		
b.doSomething()	

a==b		✖	

X	

Y	

Q	

X	

Y	

Q	

GS	

Z	

Z	

Smell	#1:	Global	State	

• Multiple	executions	can	produce	different	results	
•  Test	flakiness	
•  Order	of	tests	matters	
•  Cannot	run	tests	in	parallel	

• Unbounded	location	of	state	
•  Transitive	dependencies	

• Hidden	Global	State	in	JVM	
•  System.currentTime()	
•  new	Date()	
•  Math.random()	

©	Miško	Hevery	[4]	

What about Singletons?

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	
	
java.lang.NullPointerException
at talk3.CreditCard.charge(CredicCard.java:48)

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	
	
java.lang.NullPointerException
at talk3.CreditCardProcessor.init(CredicCardProcessor.java:146)

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		OfflineQueue.start();	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		OfflineQueue.start();	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	
	
java.lang.NullPointerException
at talk3.OfflineQueue.start(OfflineQueue.java:16)

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		Database.connect(...);	
		OfflineQueue.start();	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Deceptive	API	

	
testCharge()	{	
		Database.connect(...);	
		OfflineQueue.start();	
		CreditCardProcessor.init(...);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

• CreditCard	API	lies	
•  It	pretends	to	not	need	the	CreditCardProcessor		
even	though	in	reality	it	does.	

Motivating	example	#2:	Better	API	

	
testCharge()	{	
		??	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Better	API	

	
testCharge()	{	
		??			
		ccProc	=	new	CreditCardProcessor(queue);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Better	API	

	
testCharge()	{	
		??	
		queue	=	new	OfflineQueue(db);	
		ccProc	=	new	CreditCardProcessor(queue);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Better	API	

	
testCharge()	{	
		db	=	new	Database(...);	
		queue	=	new	OfflineQueue(db);	
		ccProc	=	new	CreditCardProcessor(queue);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Motivating	example	#2:	Better	API	

	
testCharge()	{	
		db	=	new	Database(...);	
		queue	=	new	OfflineQueue(db);	
		ccProc	=	new	CreditCardProcessor(queue);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

©	Miško	Hevery	[4]	

Dependency Injection

Smell	#2:	Lack	of	Dependency	Injection	

•  Dependency	injection	makes	your	dependencies	explicit	
•  It	does	not	make	the	dependencies	in	your	code	better	or	worse	
•  It	only	makes	them	visible	

•  If	there	are	too	many	dependencies,	do	not	blame	DI!	
•  The	dependencies	have	always	been	there,	DI	only	showed	them	to	you	

•  Dependency	injection	enforces	the	order	of	initialization	at	compile	time	
•  Compiler	helps	to	prevent	illegal	test	setup	

©	Miško	Hevery	[4]	

Won’t my system get
flooded with arguments

passed around?

Smell	#2:	Lack	of	Dependency	Injection	

•  Dependency	injection	makes	your	dependencies	explicit	
•  It	does	not	make	the	dependencies	in	your	code	better	or	worse	
•  It	only	makes	them	visible	

•  If	there	are	too	many	dependencies,	do	not	blame	DI!	
•  The	dependencies	have	always	been	there,	DI	only	showed	them	to	you	

•  Dependency	injection	enforces	the	order	of	initialization	at	compile	time	
•  Compiler	helps	to		
prevent	illegal	test	setup	

©	Miško	Hevery	[4]	

testCharge()	{	
		db	=	new	Database(...);	
		queue	=	new	OfflineQueue(db);	
		ccProc	=	new	CreditCardProcessor(queue);	
		CreditCard	cc;	
		cc	=	new	CreditCard(“1234567890121234”,	ccProc);	
		cc.charge(100);	
}	

Won’t my system get
flooded with arguments

passed around?

NO

Smell	#3:	Law	of	Demeter	violation	

Law	of	Demeter:	“Only	talk	to	your	immediate	friends”	

•  If	an	object	needs	links	to	too	many	objects,	there	may	be	something	
wrong	with	the	object		

•  Revealed	by	Dependency	Injection	

•  “Our	code	often	smells	because	we	have	a	few	objects	doing	
too	much	work,	which	requires	them	to	know	about	too	
many	other	objects.”	[Brandon	Keepers]	

•  A	nice	rule	of	thumb	is	to	check	if	we	are	able	to	describe	the	purpose	of	
each	class	and	method	without	using	AND	and	OR.	

©	Miško	Hevery	[4],	Brandon	Keepers	[3]	

Single Responsibility
Principle

Smell	#4:	Misplaced	and	Hard	Coded	new	Operator	

To	avoid	misplace,	clearly	separate:	

•  “Code	with	a	whole	bunch	of	new	operators	and	no	if	statement”		
=	code	responsible	for	starting	and	wiring	things,	i.e.	Factories.	

•  “Code	with	a	whole	bunch	of	if	statements	and	no	new	operator”		
=	code	that	is	actually	doing	something,	i.e.	Services.	
	

To	avoid	hard	coding,	make	sure	that:	

•  Constructor	only	constructs	the	object	and	its	dependencies.		
•  Doing	any	other	work	in	the	constructor	can	significantly	hinder	testing.	
•  You	can	end	up	doing	unrelated	work	(e.g.	sending	emails)	every	time		
you	need	the	object	in	your	test.		

©	Miško	Hevery	[4]	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Bad	code	smells	for	Maintainability	

• Smell	#1:	Early	Tuning	
•  Never	compromise	code	clarity	for	premature	code	optimization.	

• Smell	#2:	Super-Flexibility	
•  “Flexibility	breeds	complexity.”	
•  Do	not	shoot	for	something	that	is	flexible	from	the	early	beginning.		
Shoot	for	something	that	is	simple	and	build	flexibility	upon	that.	

• Smell	#3:	Simple	=	Stupid,	Complex	=	Smart	
•  “Too	complicated	answers	are	always	wrong,		
										no	matter	what	the	question	was.”	

•  Even	very	smart	systems	can	be	based	on	simple	structures.		
Look	at	embedded	systems	or	human	brain!	

©	B.	Bühnová,	PV260	Software	Quality	

Outline	of	the	lecture	

• Bad	code	smells	for	
•  Performance	
•  Scalability	
•  Reliability	
•  Testability	
•  Maintainability	

• Tactics	for	
•  Discussed	quality	attributes	
•  Conflicts	between	them	

©	B.	Bühnová,	PV260	Software	Quality	

Tactics	for	Performance	

•  Tactic	#1:	Take	a	profiler	into	action	
•  Do	not	guess	where	the	performance	problem	is.		
Start	your	profiler	and	find	the	bottlenecks	objectively.		

•  It	helps	you	to	understand	what	is	happening	in	the	background.	

•  Tactic	#2:	Examine	complexity	and	frequency	of	your	computations	
•  Complexity	–	Maybe	you	can	do	the	thing	more	efficiently.	
•  Frequency	–	Maybe	you	can	do	the	thing	less	often.		

•  Tactic	#3:	Concurrency	
•  Only	if	you	understand	all	aspects	and	consequences	of	parallel	execution.		

•  Tactic	#4:	Control	the	use	of	resources	
•  Balance	the	load,	control	access,	cache,	replicate,	etc.	

©	B.	Bühnová,	PV260	Software	Quality	

Tactics	for	Reliability	

•  Tactic	#1:	Monitor	what	is	going	on	
•  Acceptance	checking	for	individual	methods	and	code	fragments,	events	collection,	
processing	and	logging.	

•  Tactic	#2:	Handle	exceptions	carefully	
•  Think	twice	about	exception	handling	strategy	and	responsibilities	inside	the	system.		

•  Tactic	#3:	Make	your	system	fault	tolerant	
•  Redundancy	and	self-healing,	e.g.	seamless	rebinding	to	a	new	service	provider.		

•  Tactic	#4:	Implement	restart/recovery	capabilities	
•  Redirection	to	a	filled-in	form	when	the	form	submission	fails.	
•  System	diagnostics	and	clean-up	after	major	failure.	

Note	1:	We	only	care	about	SW	reliability	(because	this	is	a	Software	Quality	course),	not	HW,	
although	HW	fault	tolerance	is	a	very	interesting	topic.	
	
Note	2:	We	assume	that	we	do	not	deal	with	an	ultra-reliable	system.		
If	so,	other	mechanisms	would	need	to	be	in	place	(e.g.	...).	

©	B.	Bühnová,	PV260	Software	Quality	

Tactics	for	Testability	

•  Tactic	#1:	Write	CLEAN	code	
•  Simplicity	matters.	

•  Tactic	#2:	Avoid	global	state	
•  Including	its	hidden	forms.	

•  Tactic	#3:	Separate	interfaces	from	implementation	
•  Make	it	possible	to	exchange	implementations	during	testing.	

•  Tactic	#4:	Make	your	dependencies	explicit	
•  It	makes	the	life	of	developers/testers	easier,	and		

then	even	compiler	can	help	to	inspect	it.	

•  Tactic	#5:	Separate	factories	from	business	logic	
•  During	testing	it	is	important	to	have	access	to	each	of	these	parts		

without	mixing	it	with	the	other.	

©	B.	Bühnová,	PV260	Software	Quality	

Tactics	for	Maintainability	

•  Tactic	#1:	Write	CLEAN	code	
•  “Premature	optimization	is	the	root	of	all	evil.”	
•  Clean	code	is	not	only	easier	to	change,	but	also	easier	to	optimize		
(e.g.	for	performance,	scalability).	

•  Tactic	#2:	Get	ready	for	change	
•  “Change	is	the	only	constant.”	
•  Understand	–	Interfaces,	Inheritance,	Polymorphism,	Design	Patterns.	

•  Tactic	#3:	Design	your	SW	Architecture	carefully	
•  Proper	modularization	of	your	system	is	one	of	the	keys	for	maintainability.	

•  Tactic	#4:	Watch	all	dependencies	
•  Check	–	Law	of	Demeter,	High	Cohesion,	Low	Coupling.	

©	B.	Bühnová,	PV260	Software	Quality	

Conflicts	between	quality	attributes	

©	B.	Bühnová,	PV260	Software	Quality	

Takeaways	

• Bad	Code	Smells	apply	also	to	quality	attributes.	
•  They	are	just	not	that	easy	to	Google.		

• Tactics	in	comparison	to	Bad	Code	Smells	are	usually	defined	
on	a	higher	level	of	abstraction.	

• Each	tactic	for	a	specific	quality	attribute	can	act	as	an	anti-
pattern	for	a	different	quality	attribute.	
•  That	is	where	conflicts	between	quality	attributes	emerge.		
	

Barbora	Bühnová,	FI	MU	Brno	
buhnova@fi.muni.cz	
www.fi.muni.cz/~buhnova	

	

contact me

thanks for listening

©	B.	Bühnová,	PV260	Software	Quality	

References	
•  [1]	Martin	Fowler	et	al.	Refactoring:	Improving	the	Design	of	Existing	Code,	Addison-Wesley,	Mar	

2012.	ISBN	978-0133065268.	

•  [2]	Patrycja	Wegrzynowicz.	Automated	Refactoring	of	Performance	and	Concurrency	AntiPatterns.	
YouTube,	Jan	2013.	Available	at	https://www.youtube.com/watch?v=XLCbb6dcsJQ.	

•  [3]	Brandon	Keepers.	Why	Our	Code	Smells.	YouTube,	June	2012.	Available	at	
https://www.youtube.com/watch?v=JxPKljUkFQw.	

•  [4]	Miško	Hevery.	The	Clean	Code	Talks	-	Global	State	and	Singletons.	YouTube,	Nov	2008.	Available	
at	https://www.youtube.com/watch?v=-FRm3VPhseI.	

•  [5]	Miško	Hevery.	Guide:	Writing	Testable	Code,	Google,	Nov	2008.	Available	in	the	int.	syllabus	in	IS.	

•  [6]	Slava	Imeshev.	Architecture	for	Scaling	Java	Applications	to	Multiple	Servers.	YouTube,	Aug	2012.	
Available	at	https://www.youtube.com/watch?v=DhKpqGDXRCk.	

•  [7]	Lars	Lundberg	et	al.	(editors).	Software	quality	attributes	and	trade-offs,	Blekinge	Institute	of	
Technology,	June	2005.	

•  [8]	Mikael	Svahnberg	et	al.	A	Method	for	Understanding	Quality	Attributes	in	Software	Architecture	
Structures.	In	Proc.	of	SEKE'02,	pages	819-826.	ACM	New	York,	2002.	ISBN:1-58113-556-4.	

•  [9]	Michael	Feathers.	Escaping	the	Technical	Debt	Cycle.	YouTube,	Oct	2014.		
Available	at	https://www.youtube.com/watch?v=7hL6g1aTGvo.	

©	B.	Bühnová,	PV260	Software	Quality	

