PV260 - SOFTWARE QUALITY

LECT 12. Software Quality Management Process

Bruno Rossi brossi@mail.muni.cz

LAB OF SOFTWARE ARCHITECTURES AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS MASARYK UNIVERSITY, BRNO

Outline

- Software Quality Management (SQM) introduction
- The impact of Quality on Users' choices
- SQM categories
 - Software Quality Planning (SQP)
 - Software Quality Assurance (SQA)
 - Software Quality Control (SQC)
 - Software Process Improvement (SPI)
- Software Process Maturity Levels
 - Process Levels and attributes
 - ISO/IEC 15504 (SPICE)
 - Mapping CMMI to ISO/IEC 15504
- Models for Software Quality
 - Personal Software Process (PSP)
 - Agile Process Maturity
 - Open Source Maturity Model (OMM)
 - Six Sigma
- Do better processes lead to a better software product?

"Essentially, all models are wrong, but some are useful" George Box

Introduction

- Kitchenham gave five perspectives of software quality:
 - 1. Transcendental view
 - → can be recognized but difficult to define exactly
 - 2. User view
 - → fitness for purpose
 - 3. Manufacturing view
 - → conformance to specification
 - 4. Product view
 - → from inherent product characteristics
 - 5. Value-based view
 - → depends on customer's willingness to pay

Introduction

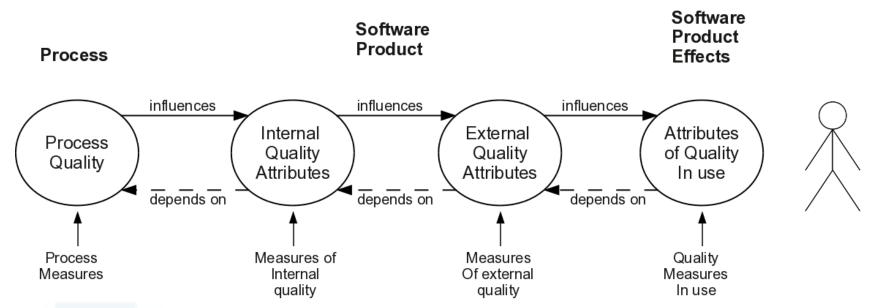
4 Views of Quality

Quality in UseWhat's the end-user's experience?)

Internal Quality Attributes
(Is it well-designed?)

External Quality Attributes (Does it pass all the tests?)

Process Quality
(Is it assembled correctly?)



We deal with process quality in this lecture

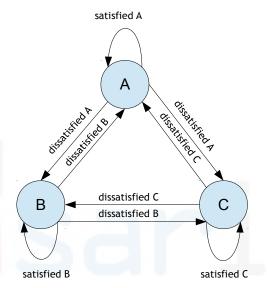
Introduction

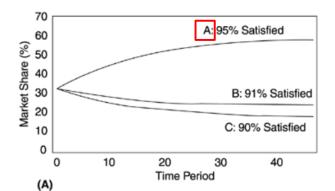
 Quality is a concept that starts with the development process, goes on with the software product and finally to the user with the effects of software usage

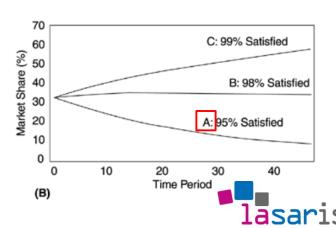
What is Software Quality Management (SQM)

- "Software quality management (SQM) is the collection of all processes
 that ensure that software products, services, and life cycle process
 implementations meet organizational software quality objectives and
 achieve stakeholder satisfaction" (SWEBOK 3.0)
- SQM defines processes, process owners, requirements for the processes, measurements of the processes and their outputs, and feedback channels throughout the whole software life cycle.

The Impact of Quality




The impact of Quality

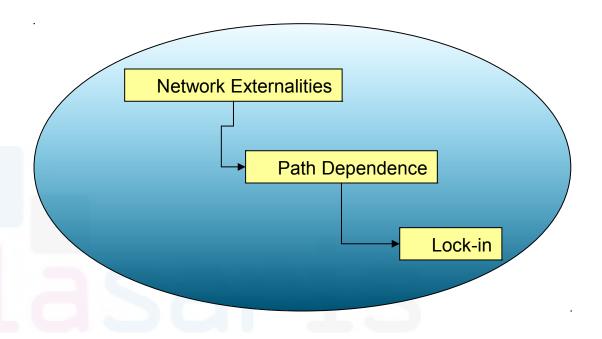

How much Quality is needed? Should we have 100% quality in our software products?

Think about some of the systems that are/have been market leaders, how was the quality of the proposed solution?

Babich has shown that **even by starting with the same level of customer satisfaction** what really matters is
the **competition with the other companies**This implies that you need to do better than your
competitors in terms of quality

Babich, P. (1992) "Customer Satisfaction: How Good is Good Enough?" Quality Progress

The impact of Quality


- What makes software different
 - Really big economies of scale
 - → additional physical inputs for production result in a non-proportional increase in output with a decrease in average costs
 - Increasing returns
 - → "tendency for that which is ahead to get further ahead, for that which loses advantage to lose further advantage" (W.B. Arthur)
 - Network Externalities
 - → the value of goods to users increases as more people adopt them
 - High initial costs
 - → software is complex to design and to deliver to the market
 - Switching costs
 - → switching to other software might be costly (e.g. training to re-do, change of infrastructure)

Network Externalities

Network Externalities: for some types of goods, the value of a good increases with the number other people adopting the same good

• "These effects arise both because the ability to communicate and share data with others will be greater, and because it is more likely that complementary hardware, software, and wetware (i.e., brain cells) will be available, when there is a large base of users of the software", Katz & Shapiro

Path Dependence

- Path Dependence: in common knowledge means 'history matters'
- But there is more.. If we consider historical paths, not only the path depends on previous events but also produces a self-reinforcing mechanism that leads to the reinforcement of the path selected. In this way, switching to another path will become at every step more costly
- In general, due to increasing returns, a phenomenon can assume contagious effects

A Formal definition of Path Dependence

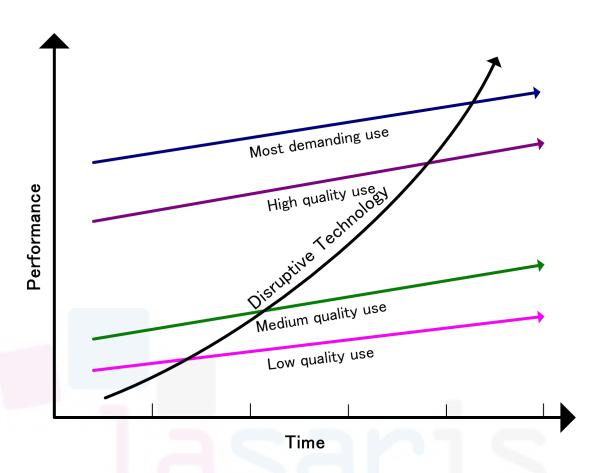
- Given a discrete set of values of time $T=\{t_1,t_2,...,t_n\}$, X_t represents the outcome at time t
- h_t, the history at time t, that is the combination of all the outcomes up to time t-1
- a dynamic process is a stochastic process equipped with a outcome function G that maps current history to next outcome
- A process is path-dependent if the outcome in any period depends on history

$$x_{t+1} = G(h_t)$$

- **Weak Path Dependent:** if the outcome probabilities depend upon the set of outcomes; the sequence of events {A,B,B,A} is considered the same as {A,B,A,B} for the evolution of the process at later stages;
- Strong Path Dependent: if the outcome probabilities depend upon the sequence of outcomes;
 events {A,B,B} has a set of outcomes completely different from {B,B,A}

This essentially means that nr.
of users of a sw will depend
on the past history – for some
platforms quality will be less
important

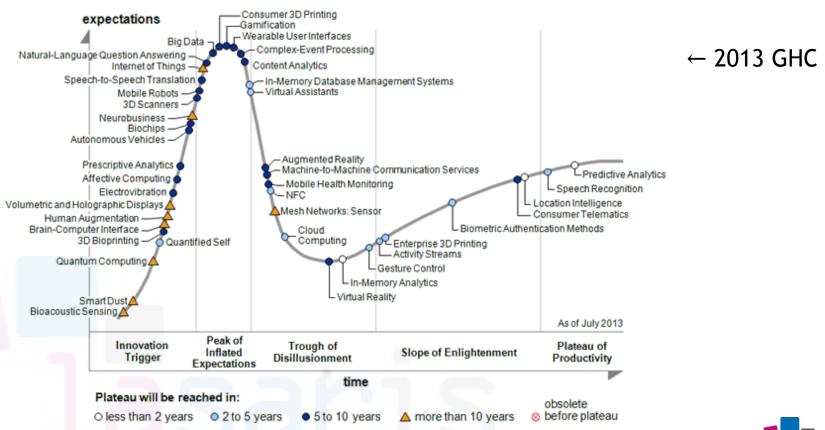
This is specific to software → if I have a car I do not really care about the types of cars that other users will have


Sustaining and Disruptive Innovations (1/3)

- So are we destined to keep the current status in the future (e.g. using Facebook, Google, etc..)?
- One nice answer comes from Christensen (2013) that identified two types of technologies:
 - Sustaining an innovation that improves a product in either expected or unexpected way, but does not lead to a paradigm shift
 - Disruptive an innovation that can potentially create a new market (e.g. facebook creating the whole social networking idea, or touch screens for the whole mobile phones industry)
- Disruptive innovations are a way to change from the status quo
 - → can you name some companies that were market leaders before a disruptive technology appeared?

Sustaining and Disruptive Innovations (2/3)

 Disruptive technologies: initially the quality might be lower than current technologies, but will catch-up quickly



Christensen, C. (2013). *The innovator's dilemma: when new technologies cause great firms to fail.* Harvard Business Review Press.

Sustaining and Disruptive Innovations (3/3)

 Gartner's Hype Cycle (GHC) for Emerging Technologies → maturity of technologies in a domain

Q&A

General Questions

- a) Can you **name one innovation** either in Software or in the IT world that impressed you particularly in the last few years (that is a **disruptive innovation**)?
- b) Thinking in terms of 5-10 years from now, what do you think will be a disruptive technology in the software/IT world?

SQM Categories

SQM comprises four subcategories

A. Software quality planning (SQP)

which quality standards are to be used, defining specific quality goals, and estimating the effort and schedule of software quality activities

B. Software quality assurance(SQA)

define and assess the adequacy of software processes to provide evidence that establishes confidence that the software processes are appropriate for and produce software products of suitable quality for their intended purposes

C. Software quality control (SQC)

activities examine specific project artifacts (documents and executables) to determine whether they comply with standards established for the project (including requirements, constraints, designs, contracts, and plans)

D. Software process improvement (SPI)

The activities in this category seek to improve process effectiveness, efficiency, and other characteristics with the ultimate goal of improving software quality

- A quality plan defines how an organization will reach the quality objectives
- Usually covers
 - Quality objectives and goals
 - Quality management scope
 - Organisation & responsibilities
 - Resource requirements
 - Cost benefit analysis
 - Activities and deliverables
 - Schedule
 - Risk analysis

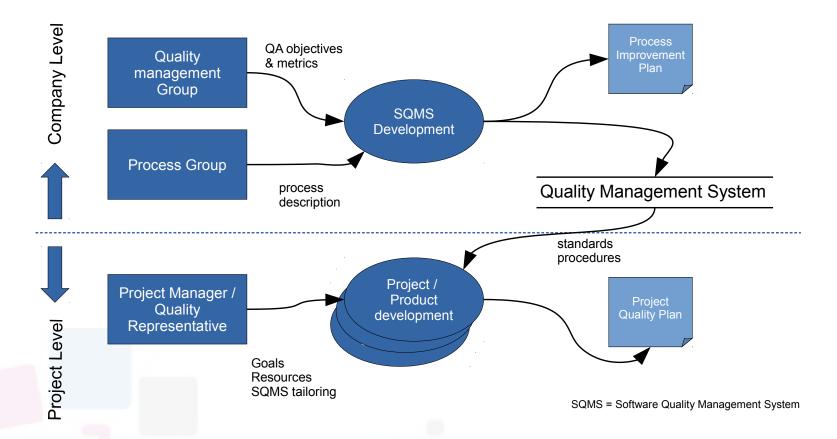
A. Software quality planning (SQP)

which quality standards are to be used defining specific quality goals, and estimating the effort and schedule of software quality activities

C. Software quality control (SQC)

activities examine specific project artifacts documents and executables) to determine whether they comply with standards established for the project (including requirements, constraints, designs, contracts, and plans)

B. Software qualit


lefine and assess the adequacy of softwar processes to provide evidence that establishes confidence that the software processes are appropriate for and produce software products of suitable quality for their intended purposes

D. Software process improvement (SPI)

The activities in this category seek to improve process effectiveness, efficiency, and other characteristics with the ultimate goal of improving software quality

Quality at the organization and project Levels

Source: http://www.chambers.com.au/glossary/quality_planning.php

- IEEE Std 730-2014 Outline for software quality planning:
- 1. Purpose & Scope
- 2. Definitions & acronyms
- 3. Reference documents
- 4. SQA Plan Overview:
- 4.1 Organization & independence
- 4.2 Software Product Risk
- 4.3 Tools
- 4.4 Standards, practices and conventions
- 4.5 effort, resource, schedules
- 5. Activities, Outcomes and tasks:
- 5.1 Product Assurance:
- 5.1.1 Evaluate plans for conformance
- 5.1.2 Evaluate product for conformance
- 5.1.3 Evaluate product for acceptability
- **5.1.4** Evaluate product life cycle support for conformance
- 5.1.5 Measure products
- 5.2 Process assurance:
- 5.2.1 Evaluate life cycle support for conformance

- 5.2.2 Evaluate environments for conformance
- 5.2.3 Evaluate subcontractor processes for conformance
- 5.2.4 Measure processes
- 5.2.5 Assess staff skills & knowledge

6. Additional Considerations

- 6.1 Contract review
- 6.2 Quality Measurement
- 6.3 Waiver and deviations
- 6.4 Task repetition
- 6.5 Risks in performing SQA
- 6.6 Communication strategy
- 6.7 Conformance process

4. SQA Records:

- 7.1 Analyze, identify, collect, file, maintain, dispose
- 7.2 Availability of records

IEEE Std 730-2014 - how is Agile considered?

- Agile → the product backlog is the contract, the standards help in defining the role of the backlog as contract
- The SQA product part in IEEE730 can be used to defined the "done" criteria
- Non-conformances to standards are inserted in the backlog and addressed in sprints in which are scheduled
- Acceptance is a continuous process in Agile
- IEEE730 contains an appendix with details about Agile adoption of the standard

B. Software Quality Assurance

 SQA means monitoring constantly the software engineering process to ensure that the approaches/methods/processes applied lead to quality within the project

A. Software quality planning (SQP)

which quality standards are to be used defining specific quality goals, and estimating the effort and schedule of software quality activities

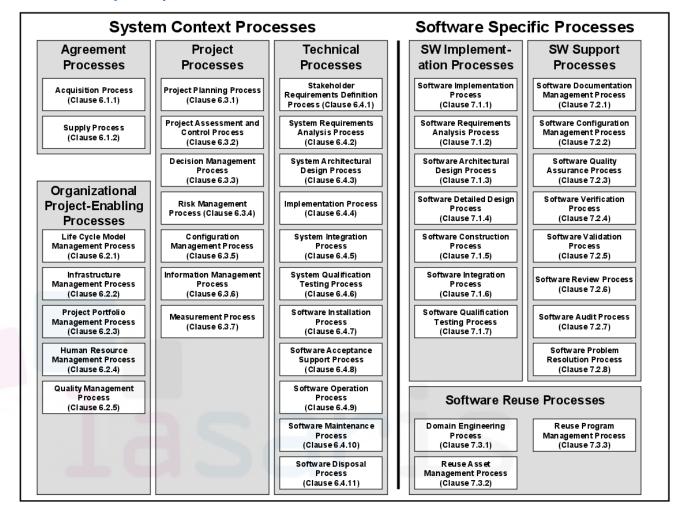
C. Software quality control (SQC)

activities examine specific project artifact documents and executables) to determin whether they comply with standards established for the project (including requirements, constraints, designs, contracts, and plans)

B. Software quality assurance(SQA)

define and assess the adequacy of software processes to provide evidence that establishes confidence that the software processes are appropriate for and produce software products of suitable quality for their intended purposes

D. Software process improvement (SPI)


The activities in this category seek to improve process effectiveness, efficiency, and other characteristics with the ultimate goal of improving software quality

B. Software Quality Assurance

- Relevant Standard: ISO/IEC/IEEE 12207:2008: Systems and software engineering -Software life cycle processes
 - → can you spot SQA in this schema?

B. Summary of IEEE Stds related to SWQA

- IEEE Std 730 → format and content of a software quality assurance plan
- IEEE Std 1061 → describes a methodology—spanning the life cycle—for establishing quality requirements and for identifying, implementing, and validating the corresponding measures.
- IEEE Std 1465 (withdrawn standard) → describes quality requirements specifically suitable for software "packages". It is expected to be replaced by an IEEE adoption of ISO/IEC 25051

C. Software Quality Control

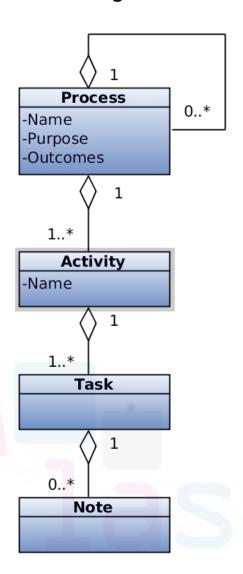
- SQC means to constantly monitor the software engineering process to check for conformance to applied standards (e.g. CMMI) or produced artifacts
- Some examples of methods
 - → The Goal Question Metrics Approach (seen on the measurement lecture)
 - → The Plan-Do-Check-Act method
 - → Total Software Quality Control

D. Software Process Improvement

- Improve process effectiveness, efficiency and other characteristics with the aim to improve software quality
- Very often software process improvement practices are embedded within the process (e.g. capability models)
- Some methods:
 - → Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI)
 - → ISO/IEC 15504 (SPICE)
 - → ISO 9001 Specification (seen during PA017 SEII)
 - → PSP and TSP

D. Software process improvement (SPI)

The activities in this category seek to improve process effectiveness, efficiency, and other characteristics with the ultimate goal of improving software quality


Software Process Maturity Levels

What is a process?

According to ISO/IEC 12207/15288:2007

Processes require a purpose and outcome. All processes have at least one activity

Activities are constructs for grouping together related tasks

A task is a detailed arrangement for the implementation of a process. It can be a requirement ("shall"), a recommendation ("should") or a permission ("may")

Notes are used to explain better the intent or mechanism of a process

Process Maturity Levels

As defined in ISO/IEC 15504-2 (SPICE)

Capability Level	Process Capability	
0	Incomplete Process	
1	Performed Process	
2	Managed Process	
3	Established Process	
4	Predictable Process	
5	Optimizing Process	

- ightarrow The process is not implemented or fails to achieve the purpose
- → The process is achieving the purpose
- → The process is now running in a managed way (planned, monitored, adjusted) work products are established, controlled and maintained
- → The managed process is now implemented using a defined process capable of achieving process outcomes
- → The established process now operates within defined limits to achieve its process outcomes
- → The predictable process is continuously improved to meet relevant current and projected business goals

Process Maturity Levels & Attributes

As defined in ISO/IEC 15504-2 (SPICE)

Process Attribute ID	Capability Levels and Process Attributes	
	Level 0: Incomplete process	
	Level 1: Performed process	
PA 1.1	Process performance	
	Level 2: Managed process	
PA 2.1	Performance management	
PA 2.2	Work product management	
	Level 3: Established process	
PA 3.1	Process definition	
PA 3.2	Process deployment	
	Level 4: Predictable process	
Process Attribute ID	Capability Levels and Process Attributes	
PA 4.1	Process measurement	
PA 4.2	Process control	
	Level 5: Optimizing process	
PA 5.1	Process innovation	
PA 5.2	Continuous optimization	

SPICE - Overall

Example Process Definition (1/2)

		1	
Process ID	SUP.1	Process ID	SUP.1
Process Name	Quality assurance		SUP.1.BP2: Develop and maintain an organisation structure which ensures that quality assurance is carried out and
Process Purpose	The purpose of the Quality assurance process is to provide independent assurance that work products and processes comply with predefined provisions and plans.		report independentely. Quality assurance team members are not directly responsible to the project organisation – they work independently from it. [Outcome 2]
Process Outcomes	As a result of successful implementation of this process:	5 Process	SJP.1.BP3: Develop and implement a plan for project quality assurance based on a quality assurance strategy. [Outcome 3]
		Categories SUP=Support)	NOTE 2: Quality assurance plan may contain quality assurance activities, a schedule of activities, assigned responsibilities, resources required, guidelines and quality standards for
	quality assurance is performed independent of the activity or project being performed;		requirement, design, coding and testing work products.
	evidence of quality assurance is produced and maintained;		SUP.1.BP4: Maintain evidence of quality assurance. Define and maintain the records that demonstrate that planned quality assurance activities have been implemented. [Outcome 3]
	4) adherence of products, processes and activities to agreed requirements are verified, documented, and communicated to the relevant parties;		SUP.1.BP5: Assure quality of work products. Carry out the activities according to the quality assurance plan to ensure that the work products meet the quality requirements. [Outcome 4]
	5) problems and/or non-conformance with agreement requirements are identified, recorded, communicated to the relevant parties, tracked and resolved; and		NOTE 3: Product quality assurance activities may include reviews, audits, problem analysis, reports and lessons learned that improve the work products for further use.
	quality assurance has the independence and authority to escalate problems to appropriate levels of management.		NOTE 4: Non conformances detected in work products may be entered into the problem resolution management process (SUP.9) to document, analyze, resolve, track to closure and prevent the problems.
	NOTE 1: Quality assurance should be coordinated with, and make use of, the results of other supporting processes such as verification, validation, joint review, audit and problem management.		SUP.1.BP6: Assure quality of process activities. Carry out the activities according to the quality assurance plan to ensure assurance that the processes meet the defined requirements
	NOTE 2: Verification and validation may be subject to quality assurance.		of the project [Outcome 4] NOTE 5: Problems detected in the process definition or imple-
	NOTE 3: Independent quality assurance should be established as a separate functional role within an organization.		mentation should be entered into the process improvement process (PIM.3) to describe, record, analyze, resolve, track to closure and prevent the problems.
Base Practices	SUP.1.BP1: Develop project quality assurance strategy. A project level strategy for conducting quality assurance is developed. This strategy is consistent with the organisational quality management strategy. [Outcome 1]		NOTE 6: Process quality assurance activities may include process assessments and audits, problem analysis, regular check of methods, tools, documents and the adherence to defined processes, reports and lessons learned that improve processes for future projects.
	NOTE 1: The quality assurance process may be co-ordinated with the related SUP.2 Verification, SUP.4 Joint Review, Validation and Audit processes.		lasari

Example Process Definition (2/2)

Process ID	SUP.1
	NOTE 7: In case of supplier involvement, the quality assurance of the supplier should cooperate with the quality assurance of the customer and all other involved parties.
	SUP.1.BP7: Track and record quality assurance activities. Records of quality assurance activities are produced and retained. [Outcome 3, 4, 5]
	SUP.1.BP8: Report quality assurance activities and results. Regularly report performances, deviations, and trends of quality assurance activities to relevant parties for information and action. [Outcome 5]
	NOTE 8: The quality assurance may use an independent path to report regularly the results to the management and other relevant stakeholders.
	SUP.1.BP9: Ensure resolution on non-conformances. Deviations or non-conformance found in process and product quality assurance actitvities should be analyzed, corrected and further prevented. [Outcome 5]
	SUP.1.BP10: Implement an escalation mechanism. Develop and maintain the escalation mechanism that ensures that quality assurance may escalate problems to appropriate levels of management to resolve them. [Outcome 6]

Overall **24 processes** are specified

Output Work Products				
Quality plan [Outcome 3, 5, 6]				
Communication Record [Outcome 5]				
Problem record [Outcome 3, 4]				
Quality Record [Outcome 2, 3, 4]				
Review Record [Outcome 2, 3, 4]				
Corrective action plan [Outcome 3, 5]				
Quality criteria [Outcome 4]	lasaris			
	Quality plan [Outcome 3, 5, 6] Communication Record [Outcome 5] Problem record [Outcome 3, 4] Quality Record [Outcome 2, 3, 4] Review Record [Outcome 2, 3, 4] Corrective action plan [Outcome 3, 5]			

Process Maturity Levels & Attributes

- SPICE is a two-dimensional level model
 - Processes and categories on one side (Process Dimension)
 - → includes Base practices, work products, characteristics
 - → Does the process reach its goals?
 - Capability of processes on the other side (Capability Dimension) → includes levels, process attributes, process attributes, management practices → How well is a specific goal met?

Process Maturity Levels & Attributes

Assessment Model

Process Dimension

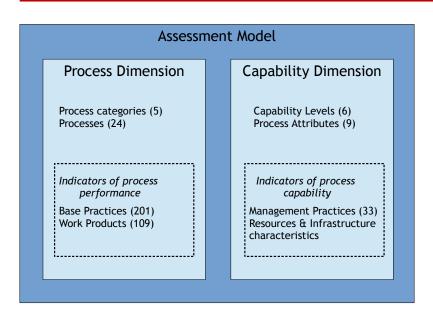
Process categories (5) Processes (24)

Indicators of process performance

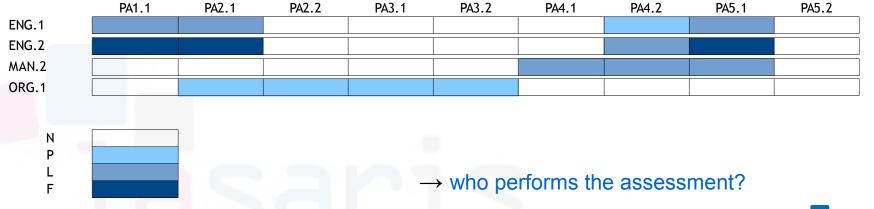
Base Practices (201) Work Products (109)

Capability Dimension

Capability Levels (6) Process Attributes (9)


Indicators of process capability

Management Practices (33) Resources & Infrastructure characteristics



Process Maturity Levels & Attributes

Assessment Scale

- up to 15% N (Not performed/achieved)
- > 15% to 50% P (Partial)
- > 50 to 85% L (Large)
- > 85% F (Full performance / achievement)

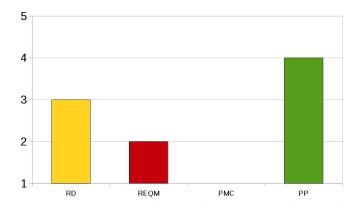
CMMI

Capability Maturity Model Integrated

Upgrade from CMM appearing around year 2000

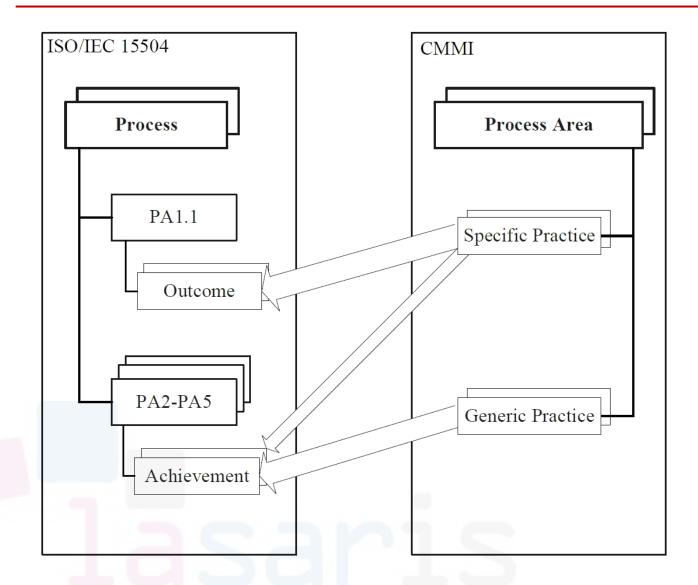
Optimized Continuous organizational focus Organizational strategy on innovation and improvement Quantitatively Managed Process and projects managed Processes and activities are based on measures managed based on measures **Defined** Processes defined, with Work done according processes performance managed Managed Projects managed, based Activities are managed on defined plans Initial Process impredictible, Project success depends on individual performance reactively managed

CMMI

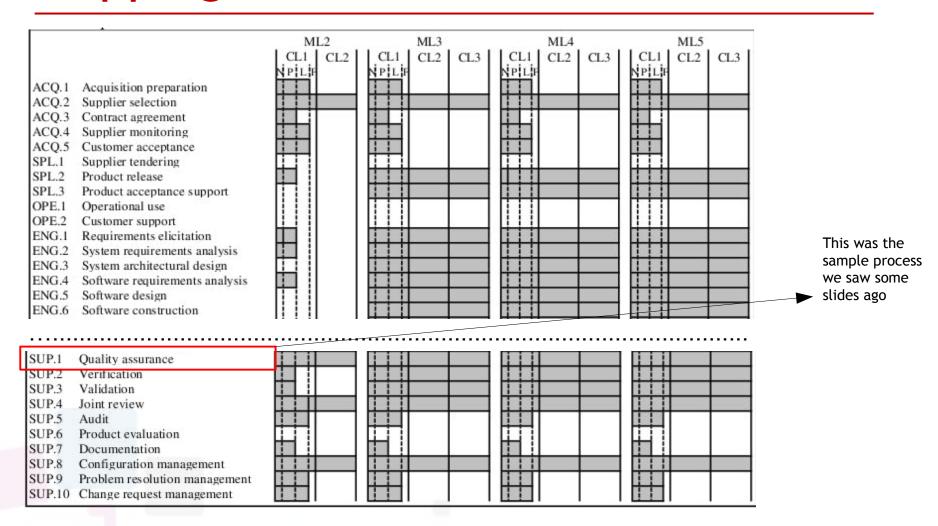

Staged → assessment of the maturity of the **entire software process**

Continuous → assessment of the capabilities of different Process Areas (PA)

Sample Pas:


- Requirements Development (RD)
- Requirements Management (REQM)
- Project Monitoring and Control (PMC)
- Project Planning (PP)
- Process and Product Quality Assurance (PPQA)
- Quantitative Project Management (QPM)
- Risk Management (RSKM)
- Supplier Agreement Management (SAM)
- Technical Solution (TS)
- Validation (VAL)

- ...



Mapping CMMI to ISO/IEC 15504

Mapping CMMI to ISO/IEC 15504

Legenda: up to 15 % - N (Not performed/achieved), > 15 % to 50 % - P (Partial), > 50 to 85 % - L (Large), and F (Full performance / achievement) > 85 % - "ML2"- "ML5" maturity levels in CMM-i - "CL1"-"CL5" are capability levels in ISO/IEC 15504

Models for Software Quality

Simplest Quality Management Form

- What is the name of the simplest quality process management practice in your opinion?
 - → Actually, it involves no process

Cowboy Coding

- Cowboy Coders write code according to their rules
- Some sentences you might have heard:

"If possible, the customer should only see the final versions of the product. It is important to minimize the contact with the customer so time is not wasted"

"The code is mine and none is allowed to touch it!"

"I do not need any analysis, design nor documentation"

"Even if it is broken, do not touch it! Try to hide it!"

"People who need comments in order to understand my code are too dumb to be working with me "

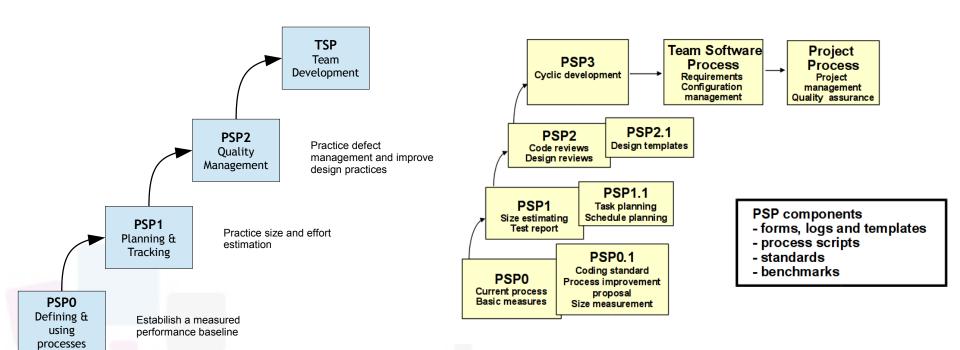
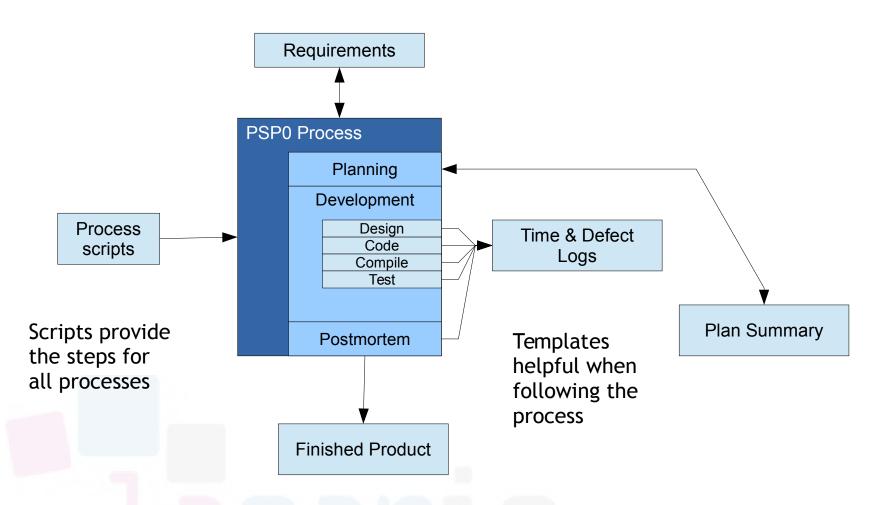


Image: https://www.cs.utexas.edu/blog/cowboy-rides-away-now

→ See http://c2.com/cgi/wiki?CowboyCoder


Personal Software Process (PSP)

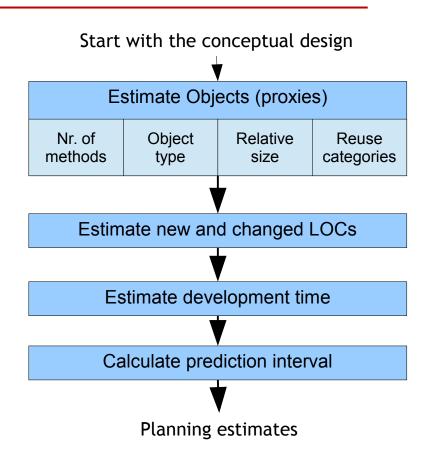
• The Personal Software Process (PSP) is a disciplined software development process that works at the individual level

PSP0 - First Level

PSP0.1 - Improvement

- Emphasizes making accurate and precise size measurements
- Incorporates measuring the size of the programs produced
- Accounts for various types of LOC in the programs produced
- Begins to look at process improvement
- The following elements are added
 - Estimating and reporting software size
 - Use of a coding standard
 - Recording process problems and improvement ideas

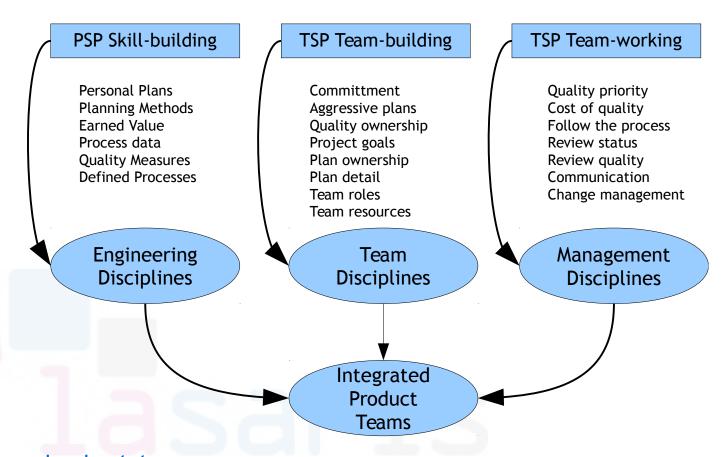
PSP0.1 - Improvement


• All is based on forms, scripts and logs

Tab	le C3 PSP0.1	Project Plai	n Sum	mary	Example	
Student	Student 11				Date	2/1/94
Program	Object LOC Cou	ınter			Program #	3A
Instructor	Humphrey				Language	С
Program Size (LC Base(B)	OC)	Plan	_		etual 87	To Date
Deleted (D)				,	asured)	
Modified (M)			_	`	ounted)	
Added (A)			_	(Ca	ounted) 113	
Reused (R)			_	(T-I	B+D-R) 0	<i>a</i>
Total New & Char	nged (N)		90	(Ca	ounted) 119	315
Total LOC (T)	ingen (11)			(2	4+M) 200	396
Total New Reuse			_	(Me	asured)	<u> </u>
Time in Phase (1	min.)	Plan	Actı	ıal	To Date	To Date %
Planning	,	10		11	36	6.4
Design		25		21	63	11.2
Code		75		97	249	44.2
Compile		20		4	35	6.2
Test		45		39	105	18.7
Postmortem		20		33	75	13.3
Total		195		205	563	100.0
Defects Injected	l		Actu		To Date	To Date %
Planning				0	0	
Design				1	3	11.5
Code				8	23	88.5
Compile				0	0	
Test	mont			0	26	100.6
Total Develop	ment			9		100.0
Defects Remove	d		Actu	ıal	To Date	To Date %
Planning				0	0	(
Design				0	0	
Code				0	0	(
Compile				2	13	50.0
Test				7	13	50.0
Total Develope				9	26	100.0
After Developm	iciit			<u>U</u>		

PSP1 - Second Level

- PSP1 introduces the concept of software effort estimation and the usage of historical data
- Using the PROBE (PROxy-Based Estimating) size estimating method
- Using linear regression, PROBE size estimation, regression analysis is based on historical estimated object LOC (the x data) and actual new and changed LOC (the y data)


PSP2 - Third Level

- PSP2 introduces design and code reviews methods for evaluating and improving the quality of your reviews
- There are three new process elements
 - PSP2 project plan summary
 - PSP2 design review checklist
 - PSP2 code review checklist

Personal Software Process (PSP)

 The idea behind PSP is that it should lead to more team-aware processes once developers have tried a self-disciplined approach

Agile Process Maturity

There are around 40 Agile Maturity models that sometimes adapt SPICE/CMMI levels/processes - each one uses different naming for levels:

Level1	Level2	Level3	Level4	Level5
 Rhetorical stage Team level maturity Neutral or Chaotic Emergent Engineering Best Practices Introductory Collaborative Dormant No Agile Waterfall Non-Agile Core Agile Development Adherence to Agile Principles Getting Started Improvising 	 Certified stage Department Level Maturity Collaborative Continuous Practices at Component Level Learn Novice Evolutionary Speed Early Adoption Forming Minimum Discipline Agile Delivery Repeteable Process across the organization Scrum at project level Practicing 	 Plausible stage Business Level Maturity Operating (consistent exhibition of competence) Cross component continuous integration Leverage Intermediate Effective Reactive Self Service Agile Consolidated Agility at scale Scrums 	 Respectable stage Project Management Level Maturity Adaptive Cross Journey Continuous integration Advanced Adaptive Responsive The Lake effect Performing Items on the right SCRUM at Enterprise Level Governed 	 Measured stage Management Level Maturity Innovating On Demand Just in Time Release Optimise Insane Ambient Scaling Coexistence with non-agile Enterprise transformation Matured

Agile Process Maturity

Some approaches suggest even to reuse SPICE Process definitions, example:

Process ID	AMP.1		
Process name	Backlog management		
Process purpose	The purpose of the Backlog Management process is t make sure that relevant items like requirements are co lected, described, properly stored, prioritized estimate		
	and solutions	are delivered.	
Process outcomes	Outcome 1	The backlog is visible at a defined sto-	
		rage place	
	Outcome 2	The items in the backlog are agreed be-	
		tween the relevant stakeholders	
	Outcome 3	The backlog contains the complete set of	
		items	
		Note: no shadow backlogs are used	
	Outcome 4	The items in the backlog are prioritized	
		Note: the classification of prioritizing	
		shall be clear. It shall be defined in which	
		manner the backlogs are to be prioritized	
		(e. g. regarding business value, complexity,	
		etc.)	
	Outcome 5	The items in the backlog are estimated	
	Outcome 6	The assignment of items to an iteration	
		(or increment) is visible	
	Outcome 7	Delivery of items are visible	

Agile Maturity Matrix

Level1 – ad hoc Agile	Level2 – doing agile	Level3 – being agile	Level4 – thinking agile	Level5 – culturally agile
Agile is not yet used or agile practices are used sporadically	Teams start to exhibit some agile habits	Lean portfolio management	Communities of practice support agile habits	Lean and agile are part of organizational culture
Variable quality	Consistency across teams is still variable	Mature embodiment of essential characteristics and behaviour of agile	Successful use of agile at scale	Perfecting waste reduction, smooth flow of delivery
Predominantly manual testing	Some knowledge sharing activities under way	Disciplined Agile delivery processes and practices with continual improvement and repeatable results	Success even with teams in multiple geographies	Sustainable pace of innovation
Very little cross- project knowledge and collaboration	Use of agile tools and practices become commonplace	Respect for people and continuous improvement	Measurement systems in place keep track of business value delivered	Continuous organizational learning and optimization of the work process and the work products
Success achieved primarily through heroic individual efforts	Solution quality improves	Appropriate agile governance	Autonomation: automation with a human touch	
	Standard work is defined			4
Source: http://www	v.agigante.it/different-lev	els-of-agile-in-a-company	//	lasa

Open Source Maturity Model (OMM)

 One of the existing models is a simplified version of CMMI taking into account the distributed nature of Open Source development

Trustworthy elements (TWE) are micro-characteristics that allow to define

maturity levels PI TST2 DSN₂ Advanced **RSKM** Level RASM REP CONT PP2 Intermediate **PMC** Level TST1 STK DSN1 RDMP2 **PPQA** ENV Basic STD LCS RDMP1 Level QTP CM MST PP1 REQM **PDOC** DFCT

PDOC - Product Documentation

STD - Use of Established and Widespread Standards

QTP - Quality of Test Plan

LCS - Licenses

ENV - Technical Environment

DFCT - Number of Commits and Bug Reports

MST - Maintainability and Stability

CM - Configuration Management

PP1 - Project Planning Part 1

REQM - Requirements Management

RDMP1 - Availability and Use of a (product) roadmap

RDMP2 - Availability and Use of a (product) roadmap

STK - Relationship between Stakeholders

PP2 - Project Planning Part 2

PMC - Project Monitoring and Control

TST1 - Test Part 1

DSN1 - Design Part 1

PPQA - Process and Product Quality Assurance

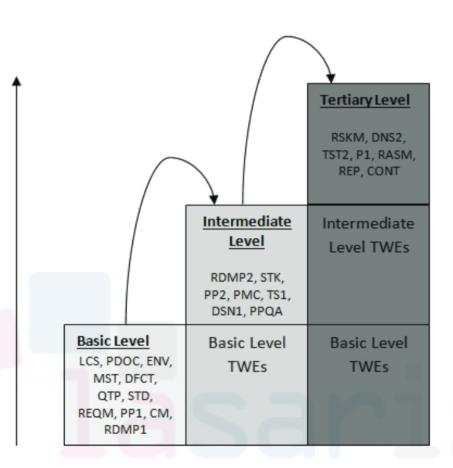
PI - Product Integration

RSKM - Risk Management

TST2 - Test Part 2

DSN2 - Design 2

RASM - Results of third party assessment


REP - Reputation

CONT - Contribution to FLOSS Product from SW Compa

Source: http://qualipso.icmc.usp.br/OMM/

Open Source Maturity Model (OMM)

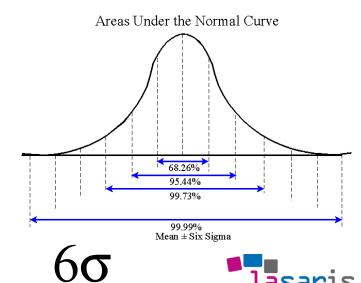
- The Goal Question Metric approach is used to define the elements of the current OMM based on the TWEs
- All levels of the GQM are aggregated according to following rating calculation:

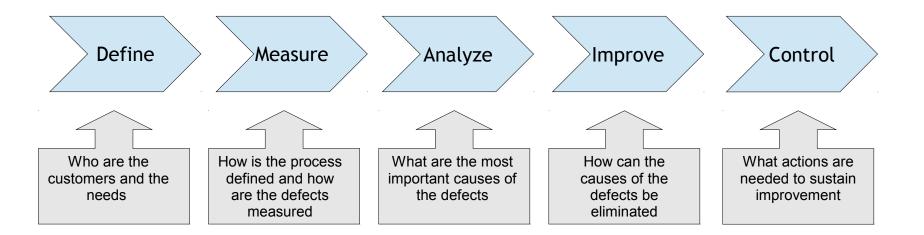
$$R(P_i) = \frac{\sum M_i}{count(M)}$$

$$R(G_i) = \frac{\sum P_i}{count(P)}$$

$$R(TWE_i) = \frac{\sum G_i}{count(G)}$$

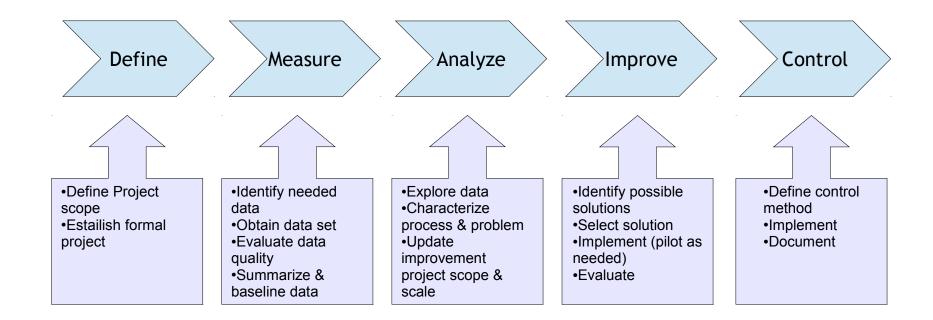
No weighting of metrics, Maturity Level calculated by using practices (not TWEs)


$$R(ML) = \frac{\sum P_i}{max \sum P_i}$$


Six Sigma

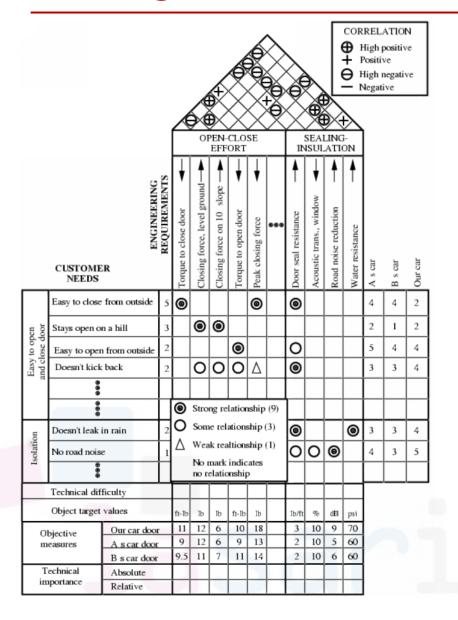
- A measure of Software Quality developed at Motorola
- The focus of Six Sigma is on eliminating defects, that is everything that is outside from the customers specifications
- No more than +/- six times the standard deviation from the process mean → 3,4 Defects Per Million datapoints
- Data is a key to understand the underlying processes and take decisions

Sigma Level	Defects x 1M
2	308.537
3	66.807
4	6.210
5	233
6	3,4


Six Sigma - Process

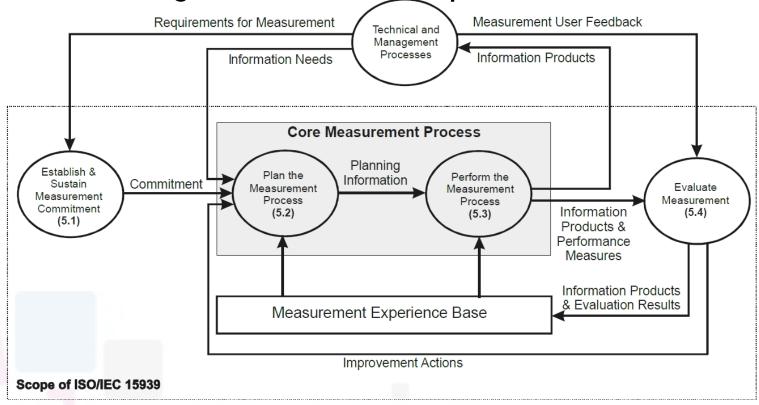
In Six Sigma, a defect is defined as "Any product, service, or process variation which prevents meeting the needs of the customer and/or which adds cost, whether or not it is detected"

Six Sigma - Process


Six Sigma - Tools

Define	Measure	Analyze	Improve	Control
 Benchmark Contract/charter Kano Model Voice of the customer Voice of the Business Quality Function Deployment (QFD) 	 GQ(I)M and indicator templates Data collection methods Measurement System Evaluation 	 Cause & Effect Diagram/Matrix Failure models & effects analysis Statistical inference Reliability Analysis Root Cause Analysis Hypothesis Test 	 Design of experiments Modeling ANOVA Tolerancing Robust Design System Thinking Decision & Risk Analysis Performance Analysis Model 	 Statistical Controls: Control charts Time series methods Non-Statistical controls: Procedural adherence Performance Management Preventive measures

Basic Tools (Histogram, scatter plots, run charts, pareto charts, cause & effect diagram, Control chart, descriptive statistics), baseline process flow map, project management, management by fact, sampling techniques, survey methods, defect metrics


Six Sigma - SQFD

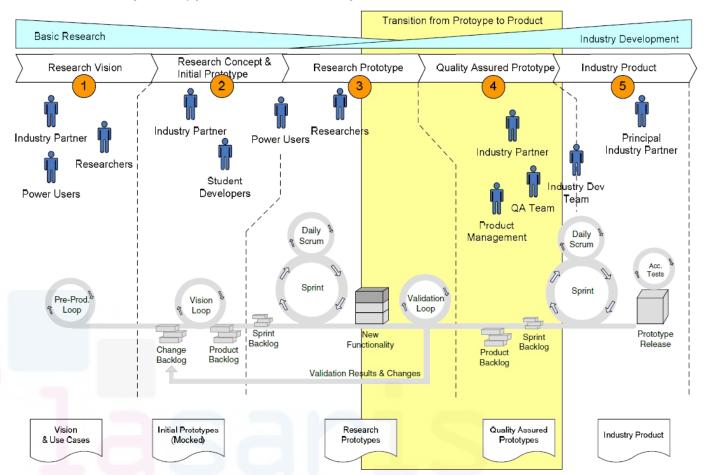
SQFD = Software Quality Function Deployment

ISO/IEC 15939

• In the lecture about measurement, we have seen the Measurement Information Model of ISO/IEC 15939:2002. To complete the view, the following is the measurement process

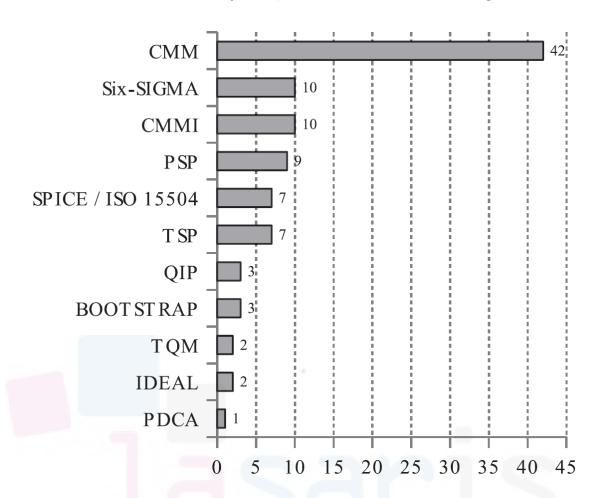
ISO/IEC 15939 - Example

Defining the measurement construct


Information Need	Estimate productivity of future project		
Measurable Concept	Project productivity		
Relevant Entities	Code produced by past projects		
	2. Effort expended by past projects		
Attributes	C++ language statements (in code)		
	Timecard entries (recording effort)		
Base Measures	Project X Lines of code		
	2. Project X Hours of effort		
Measurement Method	Count semicolons in Project X code		
	2. Add timecard entries together for Project X		
Type of Measurement Me	ethod 1. Objective		
	2. Objective		
Scale	Integers from zero to infinity		
	2. Real numbers from zero to infinity		
Type of Scale	1. Ratio		
	2. Ratio		
Unit of Measurement	1. Line		
	2. Hour		
Derived Measure	Project X Productivity		
Measurement Function	Divide Project X Lines of Code by Project X Hours of Effort		
Indicator	Average productivity		
Model	Compute mean and standard deviation of all project productivity values		
Decision Criteria	Computed confidence limits based on the standard deviation indicate the likelihood that an actual result close to the average productivity will be achieved. Very wide confidence limits suggest a potentially large departure and the need for contingency planning to deal with this outcome.		

Final Considerations (1/2)

Customization of processes is usually quite heavy in the development world, it is difficult to find 1-1 correspondence with the original model - all derives from the project's quality objectives


The following is an adaptation of SCRUM and introduction of some maturity phases to bridge the gap between research prototypes and industrial products releases

Final Considerations (2/2)

The overall interest of researchers in Software Process Improvement area for the established techniques (that is not considering mixture and ad-hoc created methods)

Do better processes lead to a better software product?

Relation of Process Quality to Product Quality

- The problem was studied in * by means of a systematic literature review
- The starting point is that models such as CMMI were born under the assumption that "the quality of a system or product is highly influenced by the quality of the process used to develop and maintain it"

Relation of Process Quality to Product Quality

- Projects that use some SPI initiatives show higher levels of software maintainability
- It takes significant time to see the benefits of an SPI program
- Most of the SPI initiatives focus on defect reduction, not on other quality concerns

 The major conclusion is that Software Process Improvement activities always increase process quality, but not always product quality

^{*} Lavallée, M., & Robillard, P. N. (2011, September). Do software process improvements lead to ISO 9126 architectural quality factor improvement. In Proceedings of the 8th international workshop on Software quality (pp. 11-17). ACM.

References

For the part about increasing returns, path dependency, if you are interested:)

- [1] Arthur, W. Brian (1989). *Competing Technologies, Increasing Returns, and Lock-In by Historical Events*, 97 Economic Journal 642-65.
- [2] Farrell, Joseph and Garth Saloner (1985). Standardization, Compatibility, And Innovation, 16 Rand Journal 70-83.
- [3] Katz, M. L., & Shapiro, C. (1985). *Network Externalities, Competition, and Compatibility*. The American Economic Review, 75(3), 424-440.
- [4] Katz, M. L., & Shapiro, C. (1986). *Technology Adoption in the Presence of Network Externalities*. Journal of Political Economy 822-841.
- [5] Liebowitz, S. J. and Stephen E. Margolis (1990). The Fable of the Keys, Journal of Law and Economics, 33:1, 1-26.
- [6] Liebowitz, S. J. and Stephen E. Margolis (1994). Path Dependency, Lock-In, and History, working paper, 1994b.
- [7] Liebowitz, S. J. and Stephen E. Margolis (1994). *Network Externality: An Uncommon Tragedy*, 8 Journal of Economic Perspectives 133-50.
- [8] Economides, N. (1996). *The Economics of Networks*, International Journal of Industrial Organization, vol. 14, no. 6, pp. 673-699
- [9] Paul A. David (2000), *Path dependence*, its critics and the quest for 'historical economics, in P. Garrouste and S. Ioannides (eds), Evolution and Path Dependence in Economic Ideas: Past and Present, Edward Elgar Publishing, Cheltenham, England.
- [10] Shapiro, C. e Varian, H.R. (1999). *Information Rules: A Strategic Guide to the Network Economy*, Harvard Business School Press.
- [11] Windrum, P., (2003). *Unlocking a lock-in: towards a model of technological succession*, in Applied Evolutionary Economics: New Empirical Methods and Simulation Techniques, P.P. Saviotti (ed.), Cheltenham: Edward Elgar.

References

References mentioned in the slides, plus:

Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering Body of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

