
IA : Principles of Programming Languages

Introduction and course organization

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz


Warm-up: A Quiz

What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “Hello World!”

Brainfuck ()
• Turing-complete programming language
• tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
• compiler of size  bytes known to exist

(more info: http://en.wikipedia.org/wiki/Brainfuck)

http://en.wikipedia.org/wiki/Brainfuck


Warm-up: A Quiz

What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “Hello World!”

Brainfuck ()
• Turing-complete programming language
• tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
• compiler of size  bytes known to exist

(more info: http://en.wikipedia.org/wiki/Brainfuck)

http://en.wikipedia.org/wiki/Brainfuck


Warm-up: A Quiz

What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “Hello World!”

Brainfuck ()
• Turing-complete programming language
• tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
• compiler of size  bytes known to exist

(more info: http://en.wikipedia.org/wiki/Brainfuck)

http://en.wikipedia.org/wiki/Brainfuck


Before high-level programming languages . . .



Now . . .

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
. . .

Scala
Rust
Go
Swi>

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Now . . .

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
. . .

Scala
Rust
Go
Swi>

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Now . . .

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
. . .

Scala
Rust
Go
Swi>

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Profanity is the one language all programmers know best.
Anon.



PL popularity
TIOBE index, January , www.tiobe.com

www.tiobe.com


PL popularity



Desirable language features

• simplicity
• orthogonality
• clear (and defined)
semantics

• ease of use
• easy to learn
• clean and readable syntax
• expressive power
• support for many paradigms
and coding styles

• strong safety guarantees
• produces fast code
• compilation speed

• reduced memory usage

• good library and tool chain
support

• standardisation and
documentation

• interoperability with other
languages

• hardware and system
independence

• support for hardware and
system programming

• . . .



Desirable language features

• simplicity
• orthogonality
• clear (and defined)
semantics

• ease of use
• easy to learn
• clean and readable syntax
• expressive power
• support for many paradigms
and coding styles

• strong safety guarantees
• produces fast code
• compilation speed

• reduced memory usage

• good library and tool chain
support

• standardisation and
documentation

• interoperability with other
languages

• hardware and system
independence

• support for hardware and
system programming

• . . .



Coding style choices

• readability: the code is easy to understand
• reliability: the program does what it is supposed to
• maintainability: it is easy to fix bugs and add new features
• efficiency: the program runs fast



Coding style choices

• readability: the code is easy to understand
• reliability: the program does what it is supposed to
• maintainability: it is easy to fix bugs and add new features
• efficiency: the program runs fast



Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.



Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.



Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.



Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.



Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.



Why study programming languages and
paradigms?

te study of language features and programming styles helps you to
• choose a languagemost appropriate for a given task;
• think about problems in new ways;
• learn new ways to express your ideas and structure your code
(⇒more tools in your toolbox);

• read other peoples code;
• learn new languages faster (you only need to learn a new syntax);
• understand the design/implementation decisions and limitations

of a given language, so you can use it better:
• You can choose between alternative ways of expressing things.
• You understand more obscure features.
• You can simulate features not available in this particular language.



Aspects of programming languages

Syntax – the structure of programs.

Describes how the various constructs (statements, expressions, . . . )
can be combined into well-formed programs.

PA Compiler Construction, IB/IA Formal Languages

Semantics – themeaning of programs.

Tells us what behaviour we can expect from a program.

IA Programming Language Semantics

Pragmatics – the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?

tis course!



Aspects of programming languages

Syntax – the structure of programs.

Describes how the various constructs (statements, expressions, . . . )
can be combined into well-formed programs.
PA Compiler Construction, IB/IA Formal Languages

Semantics – themeaning of programs.

Tells us what behaviour we can expect from a program.
IA Programming Language Semantics

Pragmatics – the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?
tis course!



Course organisation

Lectures
• tursday, :, A
• language: English
• video recordings will be available on IS
• some slides and lecture notes (in progress) will also be made
available

Examination
• final written exam
• in English
• k and z completion possible



Prerequisites

• no formal requirements
• knowledge of at least one of C/C++/J
• knowledge of at least one functional language (H, ML)
• knowledge of object-oriented programming (OOP)
• the more languages you know the better,



Study materials

Course information, additional resources
• https://is.muni.cz/auth/el/1433/jaro2016/IA010/
index.qwarp

• Rosetta code rosettacode.org

Books
• P. V. Roy, S. Haridi, Concepts, Techniques, and Models of Computer
Programming, st ed., MIT Press, .

• R. W. Sebesta, Concepts of Programming Languages, th ed.,
Addison-Wesley, .

• Programming language pragmatics, (Ed. M. L. Scott) rd ed.
Oxford, Elsevier Science, .

https://is.muni.cz/auth/el/1433/jaro2016/IA010/index.qwarp
https://is.muni.cz/auth/el/1433/jaro2016/IA010/index.qwarp
rosettacode.org


Topics covered

• brief history of programming languages
• names, bindings, scope
• types, type checking, type inference
• data abstraction: abstract data types
• control flow
• subprograms (functions, methods, . . . )
• exceptions
• object-oriented programming
• concurrency
• functional programming


