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Warm-up: A Quiz

What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “Hello World!”

Brainfuck ()
• Turing-complete programming language
• tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
• compiler of size  bytes known to exist

(more info: http://en.wikipedia.org/wiki/Brainfuck)
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Before high-level programming languages . . .



Now . . .

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
. . .

Scala
Rust
Go
Swi>

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?
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Profanity is the one language all programmers know best.
Anon.



PL popularity
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Desirable language features

• simplicity
• orthogonality
• clear (and defined)
semantics

• ease of use
• easy to learn
• clean and readable syntax
• expressive power
• support for many paradigms
and coding styles

• strong safety guarantees
• produces fast code
• compilation speed

• reduced memory usage

• good library and tool chain
support

• standardisation and
documentation

• interoperability with other
languages

• hardware and system
independence

• support for hardware and
system programming

• . . .
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Coding style choices

• readability: the code is easy to understand
• reliability: the program does what it is supposed to
• maintainability: it is easy to fix bugs and add new features
• efficiency: the program runs fast
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Programming paradigms

• procedural: program is structured as a collection of
procedures/functions

• imperative: list of commands
• functional: expressions that compute a value
• declarative: describe what you want to compute, not how
• object-oriented: objects communicating via messages
• data-oriented: layout of your data in memory
• reactive: network of components that react to events

Which one to use?

Choose the right tools for the job!

Multi-paradigm languages

temore paradigms your language support, the more tools you have
in your toolbox.
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Why study programming languages and
paradigms?

te study of language features and programming styles helps you to
• choose a languagemost appropriate for a given task;
• think about problems in new ways;
• learn new ways to express your ideas and structure your code
(⇒more tools in your toolbox);

• read other peoples code;
• learn new languages faster (you only need to learn a new syntax);
• understand the design/implementation decisions and limitations

of a given language, so you can use it better:
• You can choose between alternative ways of expressing things.
• You understand more obscure features.
• You can simulate features not available in this particular language.



Aspects of programming languages

Syntax – the structure of programs.

Describes how the various constructs (statements, expressions, . . . )
can be combined into well-formed programs.

PA Compiler Construction, IB/IA Formal Languages

Semantics – themeaning of programs.

Tells us what behaviour we can expect from a program.

IA Programming Language Semantics

Pragmatics – the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?

tis course!
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Course organisation

Lectures
• tursday, :, A
• language: English
• video recordings will be available on IS
• some slides and lecture notes (in progress) will also be made
available

Examination
• final written exam
• in English
• k and z completion possible



Prerequisites

• no formal requirements
• knowledge of at least one of C/C++/J
• knowledge of at least one functional language (H, ML)
• knowledge of object-oriented programming (OOP)
• the more languages you know the better,



Study materials

Course information, additional resources
• https://is.muni.cz/auth/el/1433/jaro2016/IA010/
index.qwarp

• Rosetta code rosettacode.org

Books
• P. V. Roy, S. Haridi, Concepts, Techniques, and Models of Computer
Programming, st ed., MIT Press, .

• R. W. Sebesta, Concepts of Programming Languages, th ed.,
Addison-Wesley, .

• Programming language pragmatics, (Ed. M. L. Scott) rd ed.
Oxford, Elsevier Science, .

https://is.muni.cz/auth/el/1433/jaro2016/IA010/index.qwarp
https://is.muni.cz/auth/el/1433/jaro2016/IA010/index.qwarp
rosettacode.org


Topics covered

• brief history of programming languages
• names, bindings, scope
• types, type checking, type inference
• data abstraction: abstract data types
• control flow
• subprograms (functions, methods, . . . )
• exceptions
• object-oriented programming
• concurrency
• functional programming


