
IA : Principles of Programming Languages

. A brief history of programming languages

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics,Masaryk University, Brno

mailto:blumens@fi.muni.cz

[Sebesta]

http://archive.oreilly.com/pub/a/oreilly/news/
languageposter_0504.html

http://archive.oreilly.com/pub/a/oreilly/news/languageposter_0504.html
http://archive.oreilly.com/pub/a/oreilly/news/languageposter_0504.html

Fortran ()
te language which started it all

te determined Real Programmer can write FORTRAN programs in any
language.

Ed Post

Fortran

• “te IBM Mathematical FORmula TRANslating System”
• motivation : IBM implemented floating-point instructions
• goal : at most times slower than hand-written machine code
(this goal was achieved!)

• primary use (then and today) : numerical computing
• main characteristics :

• the first high level language with arithmetical expressions
• conditional statements (I) and loops (D)
• user-defined functions, but no recursion
• formatted I/O
• all memory is allocated at compile time (no stack, no heap)
⇒ no support for recursive functions

• huge success, changed the way computers are used
• later versions : . . . , F , F , F

C AREA OF A TRIANGLE - HERON'S FORMULA
C INPUT - CARD READER UNIT 5, INTEGER INPUT
C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
C INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING

INTEGER A,B,C
READ(5,501) A,B,C

501 FORMAT(3I5)
IF(A.EQ.0 .OR. B.EQ.0 .OR. C.EQ.0) STOP 1
S = (A + B + C) / 2.0
AREA = SQRT(S * (S - A) * (S - B) * (S - C))
WRITE(6,601) A,B,C,AREA

601 FORMAT(4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= &
,F10.2,12HSQUARE UNITS)

STOP
END

LISP ()
Functional programming arrives

te greatest single programming language ever designed.
Alan Kay

LISP

• J. McCarthy (MIT)
• “LISt Processing” (officially)
• “Lots of Irritating Superfluous Parentheses”
• first functional language, to work with lists (AI)
• syntax based directly on syntax trees
• data structures : atoms and lists
• computation : expression evaluation
• based on recursion rather than loops
• dynamicmemory management with garbage collection
• modern dialects : S, C LISP

Later important functional languages
• ML () – syntax without parenthesis, imperative features
• H () – purely functional, lazy evaluation

(defun factorial (n)
(if (<= n 1)

1
(* n (factorial (- n 1)))))

(defun -reverse (list)
(let ((return-value '()))
(dolist (e list) (push e return-value))
return-value))

(defun comb (m list fn)
(labels ((comb1 (l c m)

(when (>= (length l) m)
(if (zerop m) (return-from comb1 (funcall fn c)))
(comb1 (cdr l) c m)
(comb1 (cdr l) (cons (first l) c) (1- m)))))

(comb1 list nil m)))

(comb 3 '(0 1 2 3 4 5) #'print)

ALGOL /ALGOL
Step in the right direction

Algol is a language so far ahead of its time, that it was not only an
improvement on its predecessors, but also on nearly all its successors.

C. A. R. Hoare

ALGOL

• “ALGOrithmic Language”
• Raison d’être: a universal, platform independent language for
scientific application
• so far no portability of programs!
• fears of IBM dominance (IBM owned Fortran)

• joint project of ACM (USA) ang GAMM (Germany),
• declared goals

• syntax similar to mathematical notation
• suitable for describing algorithms in printed publications
• mechanical translation into machine code

• problem : later abandoned by IBM (in favour of Fortran)

ALGOL

A was heavily influenced by F.

Main contributions

• formalized the concept of data type
• compound statements
• identifiers of unlimited length
• arrays of any dimension (F : max.)
• lower bounds of arrays can be specified
• nested branching
• the variable := expression syntax
(origin : expression => variable)

ALGOL

Main novel features
• syntax for the first time given in the new
BNF (Backus-Naur Form) notation

statement ::= unconditional_statement
| conditional_statement | for_statement

• block structure
• parameter passing both by value and name
• recursive procedures
• stack dynamic arrays

ALGOL – evaluation

Significance
• for more than years de facto standard for publishing
algorithms in print

• the basis for all modern imperative programming languages
• the first language designed to be platform-independent
• the first language with formally described syntax

Drawbacks
• little used in the U.S.
• too flexible (call-by-name) and difficult to implement
• no platform independent I/O
• BNF! (seemed strange and complicated in)

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;

begin
integer p, q;
y := 0; i := k := 1;
for p := 1 step 1 until n do

for q := 1 step 1 until m do
if abs(a[p, q]) > y then

begin y := abs(a[p, q]);
i := p; k := q

end
end Absmax

COBOL ()
te language of Wall Street

te use of COBOL cripples themind; its teaching should, therefore, be
regarded as a criminal offence.

E. Dijkstra

Mathematical programs should be written in mathematical notation,
data processing programs should be written in English statements.

G. Hopper

COBOL

• CBL – “Common Business Language”
• developed specifically for business applications
• requirements :

• “as much English as possible” (so managers could read it)
• ease of use, even at the expense of being less powerfull
• not to be overly restricted by implementation problems

• novel features
• hierarchical data structures (records) andmacros (DEFINE)
• program code separated into data part and procedural part
• no functions (and until no subprograms with parameters)

• its usemandated by the Departmenmt of Defense (DoD)
• successful : by the end of s approx. lines of COBOL
code were in use in Manhattan alone

• no influence on other languages (except for PL/I)

IDENTIFICATION DIVISION
PROGRAM−ID . SUM−OF−PRICES .
ENVIRONMENT DIVISION .
INPUT−OUTPUT SECTION .
FILE−CONTROL .

SELECT INP−DATA ASSIGN TO INPUT .
SELECT RESULT−FILE ASSIGN TO OUTPUT.

DATA DIVISION .
FILE SECTION .
FD INP−DATA LABEL RECORD IS OMITTED .
 ITEM−PRICE

 ITEM PICTURE X () .
 PRICE PICTURE V .
 FILLER PICTURE X () .

FD RESULT−FILE LABEL RECORD IS OMITTED .
 RESULT−LINE PICTURE X () .
. . .
PROCEDURE DIVISION .
START .

OPEN INPUT INP−DATA AND OUTPUT RESULT−FILE .
READ−DATA .

READ INP−DATA AT END GO TO PRINT−LINE .
ADD PRICE TO TOT.
ADD TO COUNT.
MOVE PRICE TO PRICE−OUT .
MOVE ITEM TO ITEM−OUT.
WRITE RESULT−LINE FROM ITEM−LINE .
GO TO READ−DATA .

PRINT−LINE .
MOVE TOT TO SUM−OUT.
MOVE COUNT TO COUNT−OUT.
WRITE RESULT−LINE FROM SUM−LINE .
CLOSE INP−DATA AND RESULT−FILE .
STOP RUN .

BASIC ()
te language for (all) students

It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are
mentally mutilated beyond hope of regeneration.

E. Dijkstra

BASIC

• J. Kemeny and T. Kurtz (Dartmouth College)
• “Beginner’s All-purpose Symbollic Instruction Code”
• design requirements

• easy to learn and use for non-science students
• “pleasant and friendly”
• provide fast turnaround for homeworks
• should allow free and private access (use of terminals)
• user time is more important than computer time

• properties
• first language used remotely through terminals
• untyped – no reals or integers, just “numbers”
• not suited to large programs – poorely structured
(surprisingly DEC used it for a part of the OS of PDP-)

• easy to implement
• widespread – minicomputers, home computers
• resurgence: V BASIC, VB.NET

10 INPUT "yards?",yd,"feet?",ft, "inches?",in
40 GO SUB 2000: REM print the values
50 PRINT '" = ";
70 GO SUB 1000: REM the adjustment
80 GO SUB 2000: REM print the adjusted values
90 PRINT
100 GOTO 10
1000 REM subroutine to adjust yd, ft, in to the normal form for yards,

feet and inches
1010 LET in=36*yd+12*ft+in: REM now everything is in inches
1030 LET s=SGN in: LET in=ABS in: REM we work with in positive,

holding its sign in s
1060 LET ft=INT (in/12): LET in=(in-12*ft)*s: REM now in is ok
1080 LET yd=INT (ft/3)*s: LET ft=ft*s-3*yd: RETURN
2000 REM subroutine to print yd, ft and in
2010 PRINT yd;"yd";ft;"ft";in;"in";: RETURN

PL/I ()
Everything but the kitchen sink

PL/I – “the fatal disease” – belongs more to the problem set than to the
solution set.

E. Dijkstra

PL/I

• “Programming LanguageOne”
• IBM product, intended to replace F, COBOL and LISP
• for both scientific (floating point) and business (decimal)
computing

• additionally support for lists and systems programming
• the recipe: mix andmatch the best of ALGOL, F and
COBOL – and add some new stuff

• new concepts (unfortunately poorly designed)
• concurrently executable subprograms
• predefined exceptions
• pointer data type

• partial success,mainly in s

Using PL/I must be like flying a plane with , buttons, switches and
handles to manipulate in the cockpit.

E. Dijkstra

/* Read in a line, which contains a string,
/* and then print every subsequent line that contains that string. */

find_strings: procedure options (main);
declare pattern character (100) varying;
declare line character (100) varying;
declare (line_no, end_file) fixed binary;

end_file = 0;
on endfile (sysin) end_file = 1;

get edit (pattern) (L);
line_no = 1;
do while (end_file = 0);

if index(line, pattern) > 0 then
put skip list (line_no, line);

line_no = line_no + 1;
get edit (line) (L);

end;

end find_strings;

SIMULA
Origins of data abstraction

• Nygard & Dahl (Norway)
• language for systems simulation
• ALGOL descendant
• never widely used

Important novel concepts
• coroutines

• special kind of subprograms
• allows to interrupt (and later resume) subprogram execution
• useful for running simulations

• the class construct
• the concept of data abstraction
• laid the foundations for OOP

ALGOL descendants

ALGOL
• significantly different from ALGOL
• themost important innovation : orthogonality

• user-defined types
• few primitive types
• which can be combined using few combining mechanisms

Pascal (N.Wirth,)
• designed as a teaching language
• remarkable combination of simplicity and expressivity
• lacks some features essential to specific applications
• relatively safe (compared to C and F)
• the case statement (ALGOL-W – Wirth andHoare)
• very easy to implement on a new system

ALGOL descendants

ALGOL
• significantly different from ALGOL
• themost important innovation : orthogonality

• user-defined types
• few primitive types
• which can be combined using few combining mechanisms

Pascal (N.Wirth,)
• designed as a teaching language
• remarkable combination of simplicity and expressivity
• lacks some features essential to specific applications
• relatively safe (compared to C and F)
• the case statement (ALGOL-W – Wirth andHoare)
• very easy to implement on a new system

Pascal bootstrap

Wirth’s Pascal distribution
• A Pascal compiler, written in Pascal, that would generate output

in P-code, a stack-based language similar to the byte code of
modern Java compilers.

• te same compiler, already translated into P-code.
• A P-code interpreter, written in Pascal.

To get Pascal running on a new machine . . .
• the only thing needed is to translate the P-code interpreter (by

hand) into some locally available language.

Forth ()

• developed by Charles H. Moore
• stack based
• maximal simplicity
• very small implementation suitable for embedded systems
(e.g. printers, spacecra>,microcontrollers)

• descendants : PostScript, RPL, Rebol

2 5 * 7 + .

: fac recursive
dup 1 > if
dup 1 - fac *

else
drop 1

endif ;

C ()
not new, but famous

• D. Ritchie, AT&T Bell Labs
• closely tied to the development of Unix
• descended from ALGOL
• little contribution to development of PLs
• systems programming language
• very limited typechecking
• the “there is no C” problem :

• for years, Kernighan and Ritchie () was the only reference
• the first standard: ANSI C (later C, C)
• many vendor-specific extensions

• huge plus : widely available compiler (part of Unix)

ML ()
the language for mathematicians

• “MetaLanguage”
• R. Milner (Edinburgh)
• functional language with side-effects (like LISP)
• rigorous semantics,mathematically clean design
• the first compiler to be proven correct
• important language features :

• powerful static type system with type inference
• powerful module system

• descendants : StandardML, OCaml,H, F#

Prolog ()
what, not how

• “Programming logic”
• A. Colmerauer (Marseille)
• declarative: describe what the result should be, not how to
compute it

• proven useful mainly for advanced databases and AI

append([], L, L).
append([H|T], L, [H|R]) :- append(T, L, R).

rev([], []).
rev([H|T], R) :- rev(T, RevT), append(RevT, [H], R).

Ada (/)
Expensive and safe

When Roman engineers built a bridge, they had to stand under it while
the first legion marched across. If programmers today worked under
similar ground rules, they might well find themselves getting much more
interested in Ada!

Robert Dewar

Ada

Augusta Ada Byron (–) – Countess of Lovelace, a friend of
Charles Babbage, the first programmer

• developed for the DoD (MIL STD)
• standardised high-level language for embedded systems
• main contributions :

• packages (encapsulation)
• exception handling
• generics (generic units)
• concurrent execution, synchronization

• criticism : too large and complex
• problems :

• compiler (un)availability
• no support for inheritance and polymorphism (until Ada)

• overtaken by C++
• used in : civil andmilitary avionics, air traffic control,
rail transportation . . .

Smalltalk ()
Object-oriented programming arrives

• A. Kay (Xerox)
• foresight : future availability of powerful desktop computers
• invention of themodern graphical user interface
• nothing but objects
• computation : sending messages to objects
(to invoke their methods)

• developed and extended the concepts from SIMULA
• the first mature object-oriented language
• unusual syntax (later adopted by O-C)

"Smalltalk Example Program"
"The following is a class definition, instantiations
of which can draw equilateral polygons of any number of
sides"
class name Polygon
superclass Object
instance variable names ourPen
numSides
sideLength
"Class methods"
"Create an instance"
new

^ super new getPen

"Get a pen for drawing polygons"
getPen

ourPen <- Pen new defaultNib: 2

"Instance methods"
"Draw a polygon"
draw

numSides timesRepeat: [ourPen go: sideLength;
turn: 360 // numSides]

"Set length of sides"
length: len

sideLength <- len

"Set number of sides"
sides: num

numSides <- num

C++ ()

• B. Stroustrup, AT&T Bell Labs
• combines :

imperative programming (C) and OOP (S)
• design goals :

• compatible with C
• almost as fast as C

• large and complicated language (generics, exceptions, . . .)
• less safe than A or J
• roaring success :

• good and easily available compilers
• backward compatibility with C
• for years the only available OO language suitable to large projects

Java ()

• James Gosling (Sun Microsystems)
• design goals

• reliability
• platform independence, portability (JVM)
• suitable for web programming

• cleaned up version of C++
• no pointers (but everything is a reference)
• strictly object-oriented
• only single inheritance (but multiple interfaces)
• fewer implicit type conversions

• automatic garbage collection
• support for concurrency/synchronization
• J : generics, enumeration class, iteration constructs

