IA159 Formal Verification Methods LTL→BA via Very Weak Alternating BA

František Blahoudek

Department of Computer Science Faculty of Informatics Masaryk University

Outline

- infinite words
- 2 Linear Temporal Logic (LTL)
- 3 nondeterministic Büchi automata (BA) and their variants
- 4 alternating automata (AA)
- 5 translation of LTL into BA via AA

Source

P. Gastin and G. Oddoux: Fast LTL to Büchi Automata Translation, LNCS 2102, Springer, 2001.

 $\{request\}\{request\}\{\}\{print\}$

{request}{request}{}{print}

infinite behaviours = infinite words (ω -words)

 $\{\}\{request\}\{\}\{request, print\}\{\}(\{request\}\{print\})^{\omega}\}$

{request}{request}{}{print}

infinite behaviours = infinite words (ω -words)

 $\{\}\{request\}\{\}\{request, print\}\{\}(\{request\}\{print\})^{\omega}\}$

 $u = u(0)u(1) \ldots \in \Sigma^{\omega}$ $u_i = u(i)u(i+1) \ldots$ ω-word over the alphabet Σthe *i*-th suffix of *u*

{request}{request}{}{print}

infinite behaviours = infinite words (ω -words)

 $\{\}\{request\}\{\}\{request, print\}\{\}(\{request\}\{print\})^{\omega}\}$

$$\begin{array}{ll} u = u(0)u(1) \ldots \in \Sigma^{\omega} & \qquad \text{ω-word over the alphabet Σ} \\ u_i = u(i)u(i+1) \ldots & \qquad \text{the i-th suffix of u} \end{array}$$

For reasoning about infinite behaviours we need

- 1 to express interesting properties, and (LTL)
- 2 to check the properties efficiently.

(Büchi automata)

Syntax of LTL

Formulae of Linear Temporal Logic (LTL) in Positive Normal Form are defined by

 $\varphi ::= \top \mid \perp \mid a \mid \neg a \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$

where \top, \bot stand for true, false respectively and *a* ranges over a countable set *AP* of atomic propositions.

Syntax of LTL

Formulae of Linear Temporal Logic (LTL) in Positive Normal Form are defined by

 $\varphi ::= \top \mid \perp \mid a \mid \neg a \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 \cup \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$

where \top, \bot stand for true, false respectively and *a* ranges over a countable set *AP* of atomic propositions.

Abbreviations: $F\varphi \equiv \top U \varphi$ $G\varphi \equiv \bot R \varphi$

Formulae of Linear Temporal Logic (LTL) in Positive Normal Form are defined by

 $\varphi ::= \top \mid \perp \mid a \mid \neg a \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid X\varphi \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$

where \top, \bot stand for true, false respectively and *a* ranges over a countable set *AP* of atomic propositions.

Abbreviations: $F\varphi \equiv \top U \varphi$ $G\varphi \equiv \bot R \varphi$

Temporal operators: terminology and intuitive meaning

Ха	next	• a • • •
aUb	until	aaab•••
aRb	releases	$b b \dots b \frac{a}{b} \bullet \bullet \bullet \dots$ or $b b b b \dots$
Fa	eventually	• • • a • •
Ga	always	aaaa

IA159 Formal Verification Methods: LTL → BA via Very Weak Alternating BA

Semantics of LTL

Let $\Sigma = 2^{AP'}$ where $AP' \subseteq AP$ is finite. The validity of an LTL formula φ for $u \in \Sigma^{\omega}$, written $u \models \varphi$, is defined as

$$\begin{array}{ll} u \models \top \\ u \models a & \text{iff } a \in u(0) \\ u \models \neg a & \text{iff } a \notin u(0) \\ u \models \varphi_1 \lor \varphi_2 & \text{iff } u \models \varphi_1 \text{ or } u \models \varphi_2 \\ u \models \varphi_1 \land \varphi_2 & \text{iff } u \models \varphi_1 \text{ and } u \models \varphi_2 \\ u \models X\varphi & \text{iff } u_1 \models \varphi \\ u \models \varphi_1 \cup \varphi_2 & \text{iff } \exists i \ge 0 \text{ such that} \\ u_i \models \varphi_2 \text{ and } \forall 0 \le j < i . u_j \models \varphi_1 \\ u \models \varphi_1 \operatorname{R} \varphi_2 & \text{iff } \exists i \ge 0 \text{ such that} \\ u_i \models \varphi_1 \text{ and } \forall 0 \le j \le i . u_j \models \varphi_2, \\ \text{or } \forall i \ge 0 . u_i \models \varphi_2 \end{array}$$

Given an alphabet Σ , an LTL formula φ defines the language $\mathcal{L}^{\Sigma}(\varphi) = \{ w \in \Sigma^{\omega} \mid w \models \varphi \}.$

IA159 Formal Verification Methods: LTL→BA via Very Weak Alternating BA

Büchi Automata

A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ defined precisely as a finite automaton, but

- a Büchi automaton is interpreted over infinite words, and
- a run is accepting if it visits some accepting state infinitely often.

Büchi Automata

A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ defined precisely as a finite automaton, but

- a Büchi automaton is interpreted over infinite words, and
- a run is accepting if it visits some accepting state infinitely often.

with infinitely many b.

Accepts all infinite words over $\Sigma = 2^{\{a,b\}}$ where *b* appears in infinitely many sets.

 $\{b\}, \{a, b\}$

 $\{b\}, \{a, b\}$

 $\emptyset, \{b\}, \{a\}, \{a, b\}$

Büchi Automata

A Büchi automaton (BA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ defined precisely as a finite automaton, but

- a Büchi automaton is interpreted over infinite words, and
- a run is accepting if it visits some accepting state infinitely often.

words over $\Sigma = \{a, b\}$ with infinitely many *b*.

Accepts all infinite words over $\Sigma = 2^{\{a,b\}}$ where *b* appears in infinitely many sets.

Extensions of Büchi Automata

1 transition-based acceptance:

 a run is accepting if it visits some accepting transition infinitely often

Ş

1 transition-based acceptance:

 a run is accepting if it visits some accepting transition infinitely often

Ş

Extensions of Büchi Automata

1 transition-based acceptance:

- a run is accepting if it visits some accepting transition infinitely often
- 2 generalized Büchi acceptance:
 - more sets of accepting states/transitions
 - a run is accepting if each set is visited infinitely often

Extensions of Büchi Automata

1 transition-based acceptance: a run is accepting if it visits some accepting transition infinitely often 2 generalized Büchi acceptance: more sets of accepting states/transitions a run is accepting if each set is visited infinitely often 3 co-Büchi acceptance a run is accepting if it contains only finitely many accepting

 $\rightarrow \stackrel{\uparrow}{p} \xrightarrow{\neg b} \stackrel{\neg b}{q}$

state-based Büchi

transition-based co-Büchi

states/transitions

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \{F_1, F_2, \dots, F_k\})$ be a transition-based generalized Büchi automaton (TGBA) with $k \ge 2$ accepting sets. We build an equivalent state-based Büchi automaton $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \delta_{\mathcal{B}}, q_{\mathcal{B}}, F)$ as follows.

• we have k + 1 copies of \mathcal{A} (levels 0 to k)

 $|Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k+1) \cdot |Q|$

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \{F_1, F_2, \dots, F_k\})$ be a transition-based generalized Büchi automaton (TGBA) with $k \ge 2$ accepting sets. We build an equivalent state-based Büchi automaton $\mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \delta_{\mathcal{B}}, q_{\mathcal{B}}, F)$ as follows.

• we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k + 1) \cdot |Q|$

• the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$

- we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k + 1) \cdot |Q|$
- the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$
- all transitions from level 0 go to level 1 $((q, 0), a, (p, 1)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta$

- we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k+1) \cdot |Q|$
- the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$
- all transitions from level 0 go to level 1 $((q,0), a, (p,1)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta$
- on level i > 2 we wait for a transition from F_i and then move to level (i + 1) (or 0 if i = k) $((q, i), a, (p, i)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta \setminus F_i$ $((q, i), a, (p, (i+1) \mod (k+1))) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta \cap F_i$

- we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k + 1) \cdot |Q|$
- the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$
- all transitions from level 0 go to level 1 $((q,0), a, (p,1)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta$
- on level *i* > 2 we wait for a transition from *F_i* and then move to level (*i* + 1) (or 0 if *i* = *k*) ((*q*, *i*), *a*, (*p*, *i*)) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ ∖ *F_i* ((*q*, *i*), *a*, (*p*, (*i*+1) mod (*k*+1))) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ∩*F_i*the level 0 is acconting.
- the level 0 is accepting $F = Q \times \{0\}$

- we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k + 1) \cdot |Q|$
- the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$
- all transitions from level 0 go to level 1 $((q,0), a, (p,1)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta$
- on level *i* > 2 we wait for a transition from *F_i* and then move to level (*i* + 1) (or 0 if *i* = *k*) ((*q*, *i*), *a*, (*p*, *i*)) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ ∖ *F_i* ((*q*, *i*), *a*, (*p*, (*i*+1) mod (*k*+1))) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ∩*F_i*the level 0 is acconting.
- the level 0 is accepting $F = Q \times \{0\}$

- we have k + 1 copies of \mathcal{A} (levels 0 to k) $Q_{\mathcal{B}} = Q \times \{0, \dots, k\}$ $|Q_{\mathcal{B}}| \le (k + 1) \cdot |Q|$
- the initial state is on level 0 $q_{\mathcal{B}} = (q_0, 0)$
- all transitions from level 0 go to level 1 $((q,0), a, (p,1)) \in \delta_{\mathcal{B}} \iff (q, a, p) \in \delta$
- on level *i* > 2 we wait for a transition from *F_i* and then move to level (*i* + 1) (or 0 if *i* = *k*) ((*q*, *i*), *a*, (*p*, *i*)) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ ∖ *F_i* ((*q*, *i*), *a*, (*p*, (*i*+1) mod (*k*+1))) ∈ δ_B ⇔ (*q*, *a*, *p*) ∈ δ∩*F_i*the level 0 is according.
- the level 0 is accepting *F* = *Q* × {0}

G-explosion

 applications in automata-based LTL model checking, vacuity checking (checks trivial validity of a specification formula), ...

. . .

- applications in automata-based LTL model checking, vacuity checking (checks trivial validity of a specification formula), ...
- - LTL \rightarrow generalized Büchi automata (GBA) \rightarrow BA (Spin)
 - LTL \rightarrow transition-based GBA (TGBA) \rightarrow BA (Spot)

. . .

- applications in automata-based LTL model checking, vacuity checking (checks trivial validity of a specification formula), ...
- - LTL \rightarrow generalized Büchi automata (GBA) \rightarrow BA (Spin)
 - LTL \rightarrow transition-based GBA (TGBA) \rightarrow BA (Spot)
 - LTL → very weak alternating co-Büchi automata (VWAA) → \rightarrow TGBA → BA (LTL2BA, LTL3BA)
- translations via alternating automata offer
 - size-reducing optimizations of alternating automata
 - smaller resulting BA (in some cases)

IA159 Formal Verification Methods: LTL→BA via Very Weak Alternating BA

An alternating co-Büchi automaton is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: Q \times \Sigma \to 2^{2^Q}$ is a transition function,
- $q_0 \in Q$ is an initial state,
- $F \subseteq Q$ is a set of co-Büchi-accepting states.

$$\delta(p, \{a, b\}) = \{\{p\}, \{p, q\}\}$$

 $\delta(q, \{b\}) = \{\emptyset\}$
 $\delta(q, \emptyset) = \{\}$

Alternating Automata – Runs

A run of A over a word $u = u(0)u(1)\dots$ is a Directed Acyclic Graph (DAG) G = (V, E) where

 $\blacksquare V = Q \times \{0, 1, 2, \ldots\}$

• only the state q_0 is in the level 0

for any $(q, i) \in V$ it holds that

- there is exactly one $P \in \delta(q, u(i))$ such that
- for each $p \in P$ it holds that $((q, i), (p, i + 1)) \in E$

no other nodes and edges are in V and E

A run is accepting iff each its infinite branch contains only finitely many states from *F*. [co-Büchi acceptance]

An automaton A accepts a word u iff there is an accepting run of A on u. We set

$$L(\mathcal{A}) = \{ u \in \Sigma^{\omega} \, | \, \mathcal{A} \text{ accepts } u \}.$$

Intuitively, an alternating automaton is very weak, written VWAA (or linear or 1-weak, written A1W) iff it contains no cycles except selfloops.

Formally, let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be an alternating automaton. Automaton \mathcal{A} is very weak iff there exists a partial order \leq on Q such that for all $p, q \in Q$ and $\alpha \in \Sigma$ it holds:

$$p \in P, P \in \delta(q, \alpha) \implies p \preceq q$$

$\text{LTL} \rightarrow \text{co-Büchi VWAA}$
The main ideas:

- **\blacksquare** states are subformulae of φ
- build bottom-up
- what needs to hold now and what in the next step

The main ideas:

- \blacksquare states are subformulae of φ
- build bottom-up
- what needs to hold now and what in the next step

Transition combination: Let $D, D' \subseteq 2^Q$ be two sets of state sets. We define their product $D \otimes D'$ as

$$D \otimes D' = \{ P \cup P' \mid P \in D \text{ and } P' \in D' \}$$

- standard Büchi automata are alternating Büchi automata where each set in δ(p, l) is singleton
- VWAA automata have the same expressive power as LTL

LTL→VWAA

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$ for some finite $AP' \subseteq AP$ Output: VWAA automaton $\mathcal{A} = (Q, \Sigma, \delta, \varphi, F)$ accepting $L^{\Sigma}(\varphi)$

$LTL \rightarrow VWAA$

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$ for some finite $AP' \subseteq AP$ Output: VWAA automaton $\mathcal{A} = (Q, \Sigma, \delta, \varphi, F)$ accepting $L^{\Sigma}(\varphi)$

 $\blacksquare Q = \{ \psi \mid \psi \text{ is a subformula of } \varphi \}$

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$ for some finite $AP' \subseteq AP$ Output: VWAA automaton $\mathcal{A} = (Q, \Sigma, \delta, \varphi, F)$ accepting $L^{\Sigma}(\varphi)$

Q = {ψ | ψ is a subformula of φ}
δ for *I* ∈ Σ is defined as follows

$$\delta(\top, I) = \{\emptyset\}$$

$$\delta(\bot, I) = \emptyset$$

$$\delta(a, I) = \{\emptyset\} \text{ if } a \in I, \ \emptyset \text{ otherwise}$$

$$\delta(\neg a, I) = \{\emptyset\} \text{ if } a \notin I, \ \emptyset \text{ otherwise}$$

$LTL \rightarrow VWAA \text{ cont.}$

$LTL \rightarrow VWAA \text{ cont.}$

$LTL {\rightarrow} VWAA \text{ cont.}$

$$A_i \in \delta(\psi_1, I) \iff I \models \alpha_i$$

$LTL {\rightarrow} VWAA \text{ cont.}$

$$A_i \in \delta(\psi_1, I) \iff I \models \alpha_i$$

$LTL {\rightarrow} VWAA \text{ cont.}$

$$A_i \in \delta(\psi_1, I) \iff I \models \alpha_i$$

$$\delta(\psi_1 \wedge \psi_2, I) = \delta(\psi_1, I) \otimes \delta(\psi_2, I)$$

$$(\psi_{1}) (\psi_{2})$$

$$(\lambda_{i}) (\psi_{1} \wedge \psi_{2})$$

$$(\psi_{1} \wedge \psi_{2})$$

$$(\psi_{1} \wedge \psi_{2})$$

$$(\psi_{1} \wedge \psi_{2})$$

$$(\psi_{1} \vee \psi_{2})$$

$$(\psi$$

$$\delta(\psi_1 \vee \psi_2, I) = \delta(\psi_1, I) \cup \delta(\psi_2, I)$$

$$\delta(\mathsf{X}\psi_1, I) = \{\{\psi_1\}\}\$$

IA159 Formal Verification Methods: LTL → BA via Very Weak Alternating BA

$LTL \rightarrow VWAA \text{ cont.}$

IA159 Formal Verification Methods: LTL → BA via Very Weak Alternating BA

$\mathsf{LTL}{\rightarrow}\mathsf{VWAA} \text{ cont.}$

$\mathsf{LTL}{\rightarrow}\mathsf{VWAA} \text{ cont.}$

$\blacksquare F = \{\psi_1 \cup \psi_2 \mid \psi_1 \cup \psi_2 \text{ is a subformula of } \varphi\}$

IA159 Formal Verification Methods: LTL→BA via Very Weak Alternating BA

IA159 Formal Verification Methods: LTL → BA via Very Weak Alternating BA

Note that every infinite branch of a run of \mathcal{A} has a suffix with states of the form $\psi_1 \cup \psi_2$ or $\psi_1 \cap \mathbb{R} \psi_2$ (other states have no loops and can appear at most once on a branch). *F* is defined to ensure that ψ_2 eventually holds for each $\psi_1 \cup \psi_2$.

Theorem

Given an LTL formula φ and an alphabet Σ , one can construct a VWAA \mathcal{A} accepting $L^{\Sigma}(\varphi)$ such that the number of states of \mathcal{A} is linear in the length of φ .

IA159 Formal Verification Methods: LTL→BA via Very Weak Alternating BA

co-Büchi VWAA \rightarrow TGBA

The key ideas:

- the TGBA tracks (selected) possible runs of the VWAA
- a run of the TGBA tracks states on each level of the run (DAG)

The key ideas:

- the TGBA tracks (selected) possible runs of the VWAA
- a run of the TGBA tracks states on each level of the run (DAG)
- states of the TGBA are sets (conjunction) of states

The key ideas:

- the TGBA tracks (selected) possible runs of the VWAA
- a run of the TGBA tracks states on each level of the run (DAG)
- states of the TGBA are sets (conjunction) of states
- once a state q is left by a branch, the branch never visits q again
- escaping f-transitions for an co-Büchi accepting state f

A transition $(q, I, P) \in \delta$ is *q*-escaping iff $q \notin P$.

Q' =
$$2^Q$$

Q' = $\{q_0\}$

■
$$Q' = 2^Q$$

■ $q'_0 = \{q_0\}$
■ $\delta''(P, I) = \bigotimes_{p \in P} \delta(p, I)$ is an unoptimized tr. function

$$\begin{array}{l} \mathbf{Q}' = 2^{Q} \\ \mathbf{q}'_{0} = \{q_{0}\} \\ \mathbf{\delta}''(P, I) = \bigotimes_{p \in P} \delta(p, I) \text{ is an unoptimized tr. function} \\ \mathbf{\mathcal{F}}'' = \{T''_{f} \subseteq \delta'' \mid f \in F\} \text{ where} \\ T''_{f} = \{(P_{1}, I, P_{2}) \mid f \notin P_{2}, \text{ or} \\ (f, I, P') \in \delta, P' \subseteq P_{2} \text{ and } f \notin P'\} \end{array}$$

Input: a co-Büchi VWAA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with k = |F|Output: TGBA $\mathcal{B} = (Q', \Sigma, \delta', q'_0, F)$ accepting $L(\mathcal{A})$

$$\begin{array}{l} \mathbf{Q}' = \mathbf{2}^{Q} \\ \mathbf{q}'_{0} = \{q_{0}\} \\ \mathbf{\delta}''(P, I) = \bigotimes_{p \in P} \delta(p, I) \text{ is an unoptimized tr. function} \\ \mathbf{F}'' = \{T''_{f} \subseteq \delta'' \mid f \in F\} \text{ where} \\ T''_{f} = \{(P_{1}, I, P_{2}) \mid f \notin P_{2}, \text{ or} \\ (f, I, P') \in \delta, P' \subseteq P_{2} \text{ and } f \notin P'\} \end{array}$$

 $\blacksquare \preccurlyeq$ is a relation on transitions of δ'' where

$$t_1 \preccurlyeq t_2 \text{ iff } t_1 = (P, I, P_1) \text{ and } t_2 = (P, I, P_2) \text{ and}$$

 $P_1 \subseteq P_2 \text{ and}$
 $t_1 \in T''_f \implies t_2 \in T''_f \text{ for all } f \in F$

Input: a co-Büchi VWAA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with k = |F|Output: TGBA $\mathcal{B} = (Q', \Sigma, \delta', q'_0, F)$ accepting $L(\mathcal{A})$

$$\begin{array}{l} \mathbf{Q}' = \mathbf{2}^{Q} \\ \mathbf{q}'_{0} = \{q_{0}\} \\ \mathbf{\delta}''(P, I) = \bigotimes_{p \in P} \delta(p, I) \text{ is an unoptimized tr. function} \\ \mathbf{F}'' = \{T''_{f} \subseteq \delta'' \mid f \in F\} \text{ where} \\ T''_{f} = \{(P_{1}, I, P_{2}) \mid f \notin P_{2}, \text{ or} \\ (f, I, P') \in \delta, P' \subseteq P_{2} \text{ and } f \notin P'\} \end{array}$$

■ \preccurlyeq is a relation on transitions of δ'' where

$$t_1 \preccurlyeq t_2 \text{ iff } t_1 = (P, I, P_1) \text{ and } t_2 = (P, I, P_2) \text{ and}$$

 $P_1 \subseteq P_2 \text{ and}$
 $t_1 \in T''_f \implies t_2 \in T''_f \text{ for all } f \in F$

δ' is the set of ≼-minimal transitions of δ''
 F = {*T*_f ∩ δ' | *T*_f ∈ *F*''}

IA159 Formal Verification Methods: LTL → BA via Very Weak Alternating BA

$VWAA \rightarrow TGBA - Example$

VWAA \rightarrow TGBA – Example

$VWAA \rightarrow TGBA - Example$

Theorem

Given an co-Büchi VWAA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, one can construct a TGBA \mathcal{B} with $2^{|Q|}$ states that accepts $L(\mathcal{A})$.

Corollary

Given an LTL formula φ and an alphabet Σ , one can construct a TGBA \mathcal{B} accepting $L^{\Sigma}(\varphi)$ such that the number of states of \mathcal{B} is $2^{|\varphi|}$. Consequently, one can construct a BA \mathcal{C} that accepts $L^{\Sigma}(\varphi)$ and that has at most $|\varphi| \cdot 2^{|\varphi|}$ states.
Partial order reduction

- When can a state/transition be safely removed from a Kripke structure?
- What is a stuttering principle?
- Can we effectively compute the reduction?