IA169 System Verification and Assurance

Deductive Verification

Jiří Barnat

Validation and Verification

A general goal of V&V is to prove correct behaviour of algorithms.

Reminder

- Testing is incomplete.
- Testing can detect errors but cannot prove correctness.

Conclusion

Need for another different way of verification.

Goal of formal verification

• The goal is to show that system behaves correctly with the same level of confidence as it is given with a mathematical proof.

Requirements

- **•** Formally precise semantics of system behaviour.
- Formally precise definition of system properties to be shown.

Methods of formal verification

- **•** Deductive verification
- Model checking
- Abstract interpretation

Deductive verification

Program is correct if

- it **terminates** for a valid input and returns **correct** output.
- There is a need to show two parts partial correctness and termination.

Partial correctness (Correctness, Soundness)

• If the computation terminates for valid input values (i.e. values for which the program is defined) the resulting values are correct.

Termination (Completness, Convergence)

• If executed on valid input values, the computation always terminates.

Serial programs (sequential)

- Input-output-closed and finite programs.
	- All input values are known prior program execution.
	- All output values are stored in output variables.
- Examples: Quick sort, Greatest Common Divider, . . .

General Principle

- Program instructions are viewed as state transformers.
- The goal is to show that the mutual relation of input and output values is as expected or given by the specification.
- I.e. to verify the correctness of procedure of transformation of input values to output values.

Expressing Program Properties

State of Computation

• State of computation of a program is given by the value of program counter and values of all variables.

Atomic predicates

- Basic statements about individual states of the computation.
- The validity is deduced purely from the values of variables given by the state of computation.
- Examples of atomic propositions: $(x == 0)$, $(x1 >= y3)$.
- Beware of the scope of variables.

Set of States

Can be described with a Boolean combination of atomic predicates.

• Example:
$$
(x == m) \land (y > 0)
$$

Assertion

- For a given program location defines a Boolean expression that should be satisfied with the current values of program variables in the given location during program execution.
- Invariant of a program location.

Assertions – Proving Correctness

- Assigning properties to individual locations of Control Flow Graph.
- Robert Floyd: Assigning Meanings to Programs (1967)

Testing

Assertion violation serves as a test oracle.

Run-Time Checking

- Checking location invariants during run-time.
- Improved error localisation as the assertion violated relates to a particular program line.

Undetected Errors

- If an error does not manifest itself for the given input data.
- If the program behaves non-deterministically (parallelism).

Hoare Proof System

Hoare Proof System

Principle

- \bullet Programs $=$ State Transformers.
- \bullet Specification $=$ Relation between input and output state of computation.

Hoare logic

- Designed for showing partial correctness of programs.
- \bullet Let P and Q be predicates and S be a program, then ${P} S {Q}$

is the so called Hoare triple.

Intended meaning of $\{P\}$ S $\{Q\}$

 \bullet S is a program that transforms any state satisfying pre-condition P to a state satisfying post-condition Q .

Pre- and Post- Conditions

Example

- $\bullet \{z = 5\}$ $x = z * 2 \{x > 0\}$
- Valid triple, though post-condition could be more precise (stronger).
- Example of a stronger post-condition: {x *>* 5 ∧ x *<* 20}.
- \bullet Obviously, $\{x > 5 \land x < 20\} \implies \{x > 0\}.$

The Weakest Pre-Condition

- \bullet P is the weakest pre-condition, if and only if
- \bullet {P}S{Q} is a valid triple and
- ∀P' such that ${P'}$ } $S{Q}$ is valid, $P' \implies P$.
- Edsger W. Dijkstra (1975)

How to prove {P} S {Q}

- Pick suitable conditions P' a Q'
- Decomposition into three sub-problems:

$$
\{P'\}\ S\ \{Q'\} \qquad P \implies P' \qquad Q' \Longrightarrow \ Q
$$

- \bullet Use axioms and rules of Hoare system to prove $\{P'\}$ S $\{Q'\}.$
- \bullet P \Rightarrow P' and Q' \Rightarrow Q are called proof obligations.
- **•** Proof obligations are **proven in the standard way.**

Axiom

• Assignment axiom: $\{\phi | \mathbf{x} \text{ replaced with } \mathbf{k} \} \mathbf{x} := \mathbf{k} \{ \phi \}$

Meaning

• Triple $\{P\}x := y\{Q\}$ is an axiom in Hoare system, if it holds that P is equal to Q in which all occurrences of x has been replaced with y.

Examples

{y+7*>*42} x:=y+7 {x*>*42} is an axiom • ${r=2}$ r:=r+1 ${r=3}$ is not an axiom • ${r+1=3}$ r:=r+1 ${r=3}$ is an axiom

Hoare Logic – Example 1

Example

- Prove that the following program returns value greater than zero if executed for value of 5.
- Program: $out := in * 2$

Proof

- 1) We built a Hoare triple: $\{in = 5\}$ *out* := $in * 2$ {*out* > 0}
- 2) We deduce/guess a suitable pre-condition: $\{in * 2 > 0\}$
- 3) We prove Hoare triple: {in ∗ 2 *>* 0} out := in ∗ 2 {out *>* 0} (axiom)

4) We prove auxiliary statement: $(in = 5) \implies (in * 2 > 0)$

Rule

 $\frac{\{\phi\}S_1\{\chi\}\wedge\{\chi\}S_2\{\psi\}}{\int \phi\}\n\frac{\{\phi\}S_1\{\chi\}\wedge\{\chi\}S_2\{\psi\}}{\int \phi\}\n\frac{\phi\wedge\phi}{\phi\wedge\phi\wedge\psi\wedge\psi}$ \bullet S equential composition:

Meaning

• If S_1 transforms a state satisfying ϕ to a state satisfying χ and S_2 transforms a state satisfying χ to a state satisfying ψ then the sequence S_1 ; S_2 transforms a state satisfying ϕ to a state satisfying *ψ*.

In the proof

• Should $\{\phi\}S_1; S_2\{\psi\}$ be used in the proof, an intermediate condition χ has to be found, and $\{\phi\}S_1\{\chi\}$ and $\{\chi\}S_2\{\psi\}$ have to be proven.

Axiom for **skip**: {*φ*} **skip** {*φ*}

Axiom for **:=**:

While rule:

 $Consequence rule:$

$$
\{\phi[x:=k]\}x\text{:=}\mathsf{k}\{\phi\}
$$

Composition rule: $\frac{\{\phi\}S_1\{\chi\}\wedge\{\chi\}S_2\{\psi\}}{\{\phi\}S_1;S_2\{\psi\}}$

 $\textsf{Conditional rule:} \begin{array}{l} {\begin{array}{l} {\{\phi \land B\}S_1\{\psi\} \land \{\phi \land \neg B\}S_2\{\psi\}\ {\{\phi\}\textsf{if }B\textsf{ then }S_1\textsf{ else }S_2\textsf{fi}\{\psi\} \end{array}} \end{array}}$

$$
\frac{\{\phi \land B\} S\{\phi\}}{\{\phi\} \text{while } B \text{ do } S \text{ od } \{\phi \land \neg B\}}
$$

$$
\frac{\phi \Longrightarrow \phi', \{\phi'\} \mathcal{S} \{\psi'\}, \psi' \Longrightarrow \psi}{\{\phi\} \mathcal{S} \{\psi\}}
$$

$$
r = 1;
$$

while (n \neq 0) {

$$
r = r * n;
$$

$$
n = n - 1;
$$

\n- \n
$$
\{n \geq 0 \land t=n\}
$$
\n
$$
r = 1;
$$
\n
$$
\text{while } (n \neq 0) \left\{r = r * n;
$$
\n
$$
n = n - 1;
$$
\n
$$
\{r = t!\}
$$
\n
$$
\{Q\}
$$
\n
\n

- Reformulation in terms of Hoare logic.
- \bullet Note the use of auxiliary variable t.

•
$$
\{ n \ge 0 \land t=n \}
$$
 {P}
\n $r = 1;$
\n $\{ n \ge 0 \land t=n \land r=1 \}$ {I₁}
\nwhile $(n \ne 0)$ {
\n $r = r * n;$
\n $n = n - 1;$
\n}
\n{Q}

\n- \n
$$
\{n \geq 0 \land t = n \land 1 = 1\}
$$
\n $r = 1 \{n \geq 0 \land t = n \land r = 1\}$ \n
\n- \n $\{n \geq 0 \land t = n\} \implies (n \geq 0 \land t = n \land 1 = 1)$ \n
\n

\n- \n
$$
\{n \geq 0 \land t=n\}
$$
\n
$$
r = 1;
$$
\n
$$
\{n \geq 0 \land t=n \land r=1\}
$$
\n
$$
\text{while } (n \neq 0) \quad \{r=t!/n! \land t \geq n \geq 0\}
$$
\n
$$
r = r * n;
$$
\n
$$
n = n - 1;
$$
\n
$$
\{n = t! \}
$$
\n
$$
\{Q\}
$$
\n
\n

Notes:

• Invariant of a cycle: ${1_2} \equiv {$ r=t!/n! \land t \geq n \geq 0 $}$ \bullet $I_1 \implies I_2$ ($I_2 \wedge \neg (n \neq 0)$) $\implies Q$

\n- \n
$$
\{n \geq 0 \land t=n\}
$$
\n
$$
r = 1;
$$
\n
$$
\{n \geq 0 \land t=n \land r=1\}
$$
\n
$$
\{n \neq 0\} \quad \{r=t!/n! \land t \geq n \geq 0\}
$$
\n
$$
r = r * n;
$$
\n
$$
\{r=t!/(n-1)! \land t \geq n > 0\}
$$
\n
$$
n = n - 1;
$$
\n
$$
\{r = t! \}
$$
\n
$$
\{Q\}
$$
\n
$$
\{Q\}
$$
\n
\n

\n- •
$$
\{r^*n = t!/(n-1)! \land t \geq n > 0\}
$$
 $r = r^*n \{l_3\}$
\n- • $l_2 \land (n \neq 0) \implies (r^*n = t!/(n-1)! \land t \geq n > 0)$
\n

\n- \n
$$
\{n \geq 0 \land t=n\}
$$
\n
$$
r = 1;
$$
\n
$$
\{n \geq 0 \land t=n \land r=1\}
$$
\n
$$
\{n \neq 0 \land t=n \land r=1\}
$$
\n
$$
\{n \neq 0\} \quad \{r=t!/n! \land t \geq n \geq 0\}
$$
\n
$$
r = r * n;
$$
\n
$$
\{r=t!/(n-1)! \land t \geq n > 0\}
$$
\n
$$
n = n - 1;
$$
\n
$$
\{r=t! \}
$$
\n
$$
\{Q\}
$$
\n
$$
\{Q\}
$$
\n
\n

\n- •
$$
\{ r = t!/(n-1)! \land t \geq (n-1) \geq 0 \}
$$
 n=n-1 $\{l_2\}$
\n- • $l_3 \implies (r = t!/(n-1)! \land t \geq (n-1) \geq 0)$
\n

Observation

• Hoare logic allowed us to reduce the problem of proving program correctness to a problem of proving a set of mathematical statements with arithmetic operations.

Notice about correctness's and (in)completeness

- Hoare logic is correct, i.e. if it is possible to deduce $\{P\}S\{Q\}$ then executing program S from a state satisfying P may terminate only in a state satisfying Q.
- If a proof system is strong enough to express integral arithmetics, it is necessarily incomplete, i.e. there exists claims that cannot be proven or dis-proven using the system.
- Hoare system for proving correctness of programs is incomplete due to the proof obligations generated with the consequence rule.

Troubles with Proof Construction

- Often pre- and post- condition must be suitable reformulated for the purpose of the proof.
- It is very difficult to identify loop invariants.

Partial Correctness in Practice

- Often reduced to formulation of all the loop invariants, and demonstration that they actually are the loop invariants.
- The proof of being an invariant is often achieved with math induction.

Well-Founded Domain

- Partially ordered set that does not contain infinitely decreasing sequence of members.
- Examples: (**N**,*<*), (PowerSet(**N**),⊆)

Proving Termination

- For every loop in the program a suitable well-founded domain and an expression over the domain is chosen.
- **It is shown that the value associated with a location cannot** grow along any instruction that is part of the loop.
- **It is shown that there exists at least one instruction in the** loop that decreases the value of the expression.

Automating Deductive Verification

Pre-processing

- Transformation of program to a suitable intermediate language.
- Examples of IL: Boogie (Microsoft Research), Why3 (INRIA)

Structural Analysis and Construction of the Proof Skeleton

- Identification of Hoare triples, loop invariants and suitable pre- and post-conditions (some of that might be given with the program to be verified).
- **•** Generation of auxiliary proof obligations.

Solving proof obligations

- Using tools for automated proving.
- May be human-assisted.

Tools for Automated Proving

- User guides a tool to construct a proof.
- HOL, ACL2, Isabelle, PVS, Coq, ...

Reduced to the satisfiability problem

- **Employ SAT and SMT solvers.**
- \bullet Z3, ...

Proof

A finite sequence of steps that using axioms and rules of a given proof system that transforms assumptions *ψ* into the conclusion *ϕ*.

Observation

- For systems with finitely many axioms and rules, proofs may be systematically generated. Hence, for all provable claims the proof can be found in finite time.
- All reasonable proving systems has infinitely many axioms. Consider, e.g. an axiom $x = x$. This is virtually a shortcut (template) for axioms $1 = 1$, $2 = 2$, $3 = 3$, etc.
- Semi-decidable with dove-tailing approach.

Searching for a Proof of Valid Statement

- The number of possible finite sequences of steps of rules and axiom applications is too many (infinitely many).
- In general there is no algorithm to find a proof in a given proof system even for a valid statement.
- Without some clever strategy, it cannot be expected that a tool for automated proof generation will succeed in a reasonable short time.
- The strategy is typically given by an experienced user of the automated proving tool. The user typically has to have appropriate mathematical feeling and education.
- At the end, the tool is used as a mechanical checker for a human constructed proof.

Theorem Provery

- The goal is find the proof within a given proof system.
- the proof is searched for in two modes:
	- Algorithmic mode Application of rules and axioms
		- Guided by the user of the tool.
		- Application of the general proving techniques, such as deduction, resolution, unification,
	- Search mode Looking for new valid statements
		- Employs brute-force approach and various heuristics.

Existing Tools

The description of system (axioms, rules) as well as the claim to be proven is given in the language of the tool.

Possible Outputs

- a) Proof has been found and checked.
- b) Proof has not been found.
	- The statement is valid, can be proven, but the proof has not yet been found.
	- The statement is valid, but it cannot be proven in the system.
	- The statement is invalid.

Observation

• In the case that no proof has been found, there is no indication of why it is so.

<http://rise4fun.com/dafny>

Homework

Homework

• Prove correctness of the following program using Dafny

```
method Count(N: nat, M: int, P: int) returns (R: int) {
  var a := M:
  var b := P:
  var i := 1;
  while (i \leq N) {
     a := a + 3:
    b := 2^*a + b + 1;i := i+1:
   }
R := b;
}
```
• Read and repeat:

Jaco van de Pol: Automated verification of Nested DFS

http://dx.doi.org/10.1007/978-3-319-19458-5_12