IA169 System Verification and Assurance

LTL Model Checking

Jiří Barnat

Checking Quality

- Testing is incomplete, gives no guarantees of correctness.
- Deductive verification is expensive.

Typical reasons for system failure after deployment

- Interaction with environment (unexpected input values).
- Interaction with other system components.
- Parallelism (difficult to test).

Model Checking

- Automated verification process for ...
- ... parallel and distributed systems.

Verification of Parallel and Reactive Programs

Parallel Composition

- Components concurrently contribute to the transformation of a computation state.
- The meaning comes from interleaving of actions (transformation steps) of individual components.

Meaning Functions Do Not Compose

- Meaning function of a composition cannot be obtain as composition of meaning functions of participating components.
- The result depends on particular interleaving.

Example of Incomposability

Parallel System

- System: $(y=x; y++; x=y)$ $(y=x; y++; x=y)$
- \bullet Input-output variable x
- Meaning function of both processes is *λ*x->x+1.
- The composition is: (*λ*x->x+1)·(*λ*x->x+1).
- \bullet (λ x->x+1)·(λ x->x+1) 0 = 2

Two Different System Runs

- State $= (x, y_1, y_2)$
- $(0,-,-) \stackrel{y_1=x}{\longrightarrow} (0,0,-) \stackrel{y_2=x}{\longrightarrow} (0,0,0) \stackrel{y_1++} {\longrightarrow} \stackrel{x=y_1}{\longrightarrow} (1,1,0) \stackrel{y_2++} {\longrightarrow} \stackrel{x=y_2}{\longrightarrow} (1,1,1)$
- $(0,-,-) \xrightarrow{y_1=x} (0,0,-) \xrightarrow{y_1++} \xrightarrow{x=y_1} (1,1,-) \xrightarrow{y_2=x} (1,1,1) \xrightarrow{y_2++} \xrightarrow{x=y_2} (2,1,2)$

Observation

- Specific timing of events related to interaction of components is a form of (part of) input.
- Asynchronous parallel system can be viewed as reactive as there are unknown inputs at the time of execution.

Consequence

For reactive (hence parallel) systems, the intended behaviour cannot be specified using Hoare triples.

Properties of Parallel/Reactive Programs

Examples of Specification

- Events A and B happens before event C.
- User is not allowed to enter a new value until the system processes the previous one.
- Procedure X cannot be executed simultaneously by processes P and Q (mutual exclusion).
- Every action A is immediately followed by a sequence of actions B,C and D.

Turning into Formal Language

- Use of Modal and Temporal Logics.
- Amir Pnueli, 1977

Assumption

• System properties are decsribed formally using formulae of some temporal logic.

Deductive Verification

- Approaches similar to the Hoare system exist for temporal logic formulae, however, they have never been widely used.
- Incomposability of meaning functions is difficult to bypass.

Model checking

- Alternative way of formal verification of systems.
- Based on the state-space exploration.
- Allows for specification to be given with formulae of some temporal logic.

Model Checking

Model Checking

Model Checking – Overview

- Build a formal model M of the system under verification.
- Express specification as a formula *ϕ* of selected temporal logic.
- Decide, if M |= *ϕ*. That is, if M is a model of formula *ϕ*. (Hence the name.)

Optionally

- As a side effect of the decision a **counterexample** may be produced.
- The counterexample is a sequence of states witnessing violation (in the case the system is erroneous) of the formula.
- **Model checking (the decision process) can be fully automated for all finite (and some infinite) models of systems.**

Model Checking – Schema

Model Checkers

- Software tools that can decide validity of a formula over a model of system under verification.
- SPIN, UppAal, SMV, Prism, DIVINE *. . .*

Modelling Languages

- Processes described as extended finite state machines.
- Extension allows to use shared or local variables and guard execution of a transition with a Boolean expression.
- Optionally, some transitions may be synchronised with transitions of other finite state machines/processes.

Modelling and Formalisation of Verified Systems

Reminder

- System can be viewed as a set of states that are walked along by executing instructions of the program.
- \bullet State $=$ valuation of modelled variables.

Atomic Propositions

- Basic statements describing qualities of individual states, for example: $max(x, y) > 3$.
- Validity of atomic proposition for a given state must be decidable with information merely encoded by the state.
- Amount of observable events and facts depends on amount of abstraction used during the system modelling.

Kripke Structure

- \bullet Let AP be a set of atomic propositions.
- Kripke structure is a quadruple (S, \mathcal{T}, I, s_0) , where
	- \bullet S is a (finite) set of states,
	- $T \subseteq S \times S$ is a transition relation,
	- $I: S \rightarrow 2^{AP}$ is an interpretation of AP.
	- $s_0 \in S$ is an initial state.

Kripke Transition System

- Let Act be a set of instructions executable by the program.
- Kripke structure can be extended with transition labelling to form a Kripke Transitions System.
- Kripke Transition System is a five-tuple $(S, T, I, s_0, \mathcal{L})$, where
	- \bullet (*S*, *T*, *I*, *s*₀) is Kripke Structure,
	- $\mathcal{L}: \mathcal{T} \to Act$ is labelling function.

Kripke Structure – Example

Kripke Structure

 $AP = {P - Paid, S - Served, C - Coke, B - Beer}$

Kripke Structure – Example

Kripke Transition System

 $AP=\{P - \text{Pad}, S - \text{Served}, C - \text{Coke}, B - \text{Beer}\}\$

System Run

Run

- Maximal path (such that it cannot be extended) in the graph induced by Kripke Structure starting at the initial state.
- Let $M = (S, T, I, s_0)$ be a Kripke structure. Run is a sequence of states $\pi = s_0, s_1, s_2, \ldots$ such that $\forall i \in \mathbb{N}_0$. $(s_i, s_{i+1}) \in \mathcal{T}$.

Finite Paths and Runs

- **•** Some finite path $\pi = s_0, s_1, s_2, \ldots, s_k$ cannot be extended if $\exists s_{k+1} \in S$. $(s_k, s_{k+1}) \in T$.
- Technically, we will turn maximal finite path into infinite by repeating the very last state.
- Maximal path s_0, \ldots, s_k will be understood as infinite run $S_0, \ldots, S_k, S_k, S_k, \ldots$.

Implicit and Explicit System Description

Observation

- Usually, Kripke structure that captures system behaviour is not given by full enumeration of states and transitions (explicitly), but it is given by the program source code (implicitly).
- Implicit description tends to be exponentially more succinct.

State-Space Generation

- Computation of explicit representation from the implicit one.
- Interpretation of implicit representation must be formally precise.

Practise

- Programming languages do not have precise formal semantics.
- Model checkers often build on top of modelling languages.

An Example of Modelling Language – DVE

- **•** Finite Automaton
	- States (Locations)
	- **o** Initial state
	- **•** Transitions
	- (Accepting states)
- **Transitions Extended with**
	- Guards
	- Synchronisation and Value Passing
	- Effect (Assignment)
- Local Variables
	- integer, byte
	- channel

Example of System Described in DVE Language

```
channel {byte} c[0];
process A {
byte a;
state q1,q2,q3;
init q1;
trans
q1 \rightarrow q2 { effect a=a+1; },
q2 \rightarrow q3 { effect a=a+1; },
q3\rightarrow q1 { sync c!a; effect a=0; };
}
process B {
byte b,x;
state p1,p2,p3,p4;
init p1;
trans
p1 \rightarrow p2 { effect b=b+1; },
p2 \rightarrow p3 { effect b=b+1; },
p3 \rightarrow p4 { sync c?x; },
p4\rightarrow p1 { guard x==b; effect b=0, x=0; };
}
system async;
```


Semantics Shown By Interpretation

—————————————————————

—————————————————————

—————————————————————

State: []; A:[q1, a:0]; B:[p1, b:0, x:0] 0 $\langle 0.0 \rangle$: q1 \rightarrow q2 $\{$ effect a = a+1; $\}$ 1 (1.0) : p1 \rightarrow p2 { effect b = b+1; } Command:1

State: []; A:[q1, a:0]; B:[p2, b:1, x:0] 0 (0.0) : q1 \rightarrow q2 { effect a = a+1; } 1 $(1.1): p2 \rightarrow p3$ { effect b = b+1; } Command:1

State: []; A:[q1, a:0]; B:[p3, b:2, x:0] 0 (0.0) : q1 \rightarrow q2 { effect a = a+1; } Command:0

State: []; A:[q2, a:1]; B:[p3, b:2, x:0] 0 (0.1) : q2 \rightarrow q3 { effect a = a+1; } Command:0

State: []; A:[q3, a:2]; B:[p3, b:2, x:0] 0 $(0.2&1.2)$: q3 \rightarrow q1 { sync c!a; effect a = 0; } $p3 \rightarrow p4$ { sync c?x; } Command:0

—————————————————————

—————————————————————

State: []; A:[q1, a:0]; B:[p4, b:2, x:2]

IA169 System Verification and Assurance – 05 str. 21/36

Formalising System Properties

Problem

- How to formally describe properties of a single run?
- How to mechanically check for their satisfaction?

Solution

- Employ finite automaton as a mechanical observer of run.
- Runs are infinite.
- Finite automata for infinite words (*ω*-regular languages).
- Büchi acceptance condition automaton accepts a word if it passes through an accepting state infinitely many often.

Automata over infinite words

Büchi automata

• Büchi automaton is a tuple $A = (\Sigma, S, s, \delta, F)$, where

- \bullet Σ is a finite set of symbols,
- \bullet S is a finite set f states.
- $s \in S$ is an initial state,
- $\delta: \mathcal{S} \times \Sigma \rightarrow 2^{\mathcal{S}}$ is transition relation, and
- $F \subseteq S$ is a set of accepting states.

Language accepted by a Büchi automaton

- Run ρ of automaton A over infinite word $w = a_1 a_2 \ldots$ is a sequence of states $\rho = s_0, s_1, \ldots$ such that $s_0 \equiv s$ and $\forall i : s_i \in \delta(s_{i-1}, a_i).$
- inf (ρ) Set of states that appear infinitely many time in ρ .
- Run ρ is accepting if and only if $inf(\rho) \cap F \neq \emptyset$.
- Language accepted with an automaton A is a set of all words for which an accepting run exists. Denoted as $L(A)$.

Shortcuts in Transition Guards

Observation

- Let $AP=\{X, Y, Z\}$.
- Transition labelled with $\{X\}$ denotes that X must hold true upon execution of the transition, while Y and Z are false.
- If we want to express that X is true, Z is false, and for Y we do not care, we have to create two transitions labelled with $\{X\}$ and $\{X, Y\}$.

APs as Boolean Formulae

• Transitions between the two same states may be combined and labelled with a Boolean formula over atomic propositions.

Example

- Transitions $\{X\}$, $\{Y\}$, $\{X,Y\}$, $\{X,Z\}$, $\{Y,Z\}$ a $\{X,Y,Z\}$ can be combined into a single one labelled with $X \vee Y$.
- If there are no restrictions upon execution of the transition, it may be labelled with $true \equiv X \vee \neg X$.

IA169 System Verification and Assurance – 05 str. 25/36

Task: Express with a Büchi automaton

System

• Vending machine as seen before.

$$
\bullet \ \Sigma = 2^{\{P,S,C,B\}},
$$

• Paid = $\{A \in \Sigma \mid P \in A\}$, Served = $\{A \in \Sigma \mid S \in A\}$, ...

Express the following properties

- Vending machine serves at least one drink.
- Vending machine serves at least one coke.
- Vending machine serves infinitely many drinks.
- Vending machine serves infinitely many beers.
- Vending machine does not serve a drink without being paid.
- After being paid, vending machine always serve a drink.

Linear Temporal Logic

IA169 System Verification and Assurance – 05 str. 27/36

Formula *ϕ*

- Is evaluated on top of a single run of Kripke structure.
- Express validity of APs in the states along the given run.

Temporal Operators of LTL

- F *ϕ ϕ* holds true eventually (Future).
- \bullet $G \varphi \longrightarrow \varphi$ holds true all the time (Globally).
- *ϕ*U *ψ ϕ* holds true until eventually *ψ* holds true (Until).
- $\bullet X \varphi \varphi$ is valid after execution of one transition (Next).
- *ϕ* R *ψ ψ* holds true until *ϕ* ∧ *ψ* holds true (Release).
- *ϕ* W *ψ* until, but *ψ* may never become true (Weak Until).

Graphical Representation of LTL Temporal Operators

Let AP be a set of atomic propositions.

- If $p \in AP$, then p is an LTL formula.
- If *ϕ* is an LTL formula, then ¬*ϕ* is an LTL formula.
- If *ϕ* and *ψ* are LTL formulae, then *ϕ* ∨ *ψ* is an LTL formula.
- If *ϕ* is an LTL formula, then X *ϕ* is an LTL formula.
- If *ϕ* and *ψ* are LTL formulae, then *ϕ*U *ψ* is an LTL formula.

Alternatively

$$
\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid X \varphi \mid \varphi U \varphi
$$

Syntactic shortcuts

Propositional Logic

$$
\bullet \ \varphi \wedge \psi \equiv \neg(\neg \varphi \vee \neg \psi)
$$

 $\bullet \varphi \Rightarrow \psi \equiv \neg \varphi \vee \psi$

$$
\bullet \ \varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)
$$

Temporal operators

•
$$
F \varphi \equiv \text{true } U \varphi
$$

G *ϕ* ≡ ¬F ¬*ϕ*

$$
\bullet\ \varphi\,R\,\psi\equiv\neg(\neg\varphi\;U\,\neg\psi)
$$

$$
\bullet\;\,\varphi\;W\,\psi \equiv \varphi\;U\,\psi \,\vee\, \mathsf{G}\,\varphi
$$

Alternative syntax

$$
\bullet\ \ F\varphi \equiv \diamond \varphi
$$

$$
\bullet \ \ G\varphi \equiv \Box \varphi
$$

$$
\bullet\ X\varphi\equiv\circ\varphi
$$

IA169 System Verification and Assurance – 05 str. 31/36

Model of an LTL formula

- Let AP be a set of atomic propositions.
- Model of an LTL formula is a run *π* of Kripke structure.

Notation

- **•** Let $\pi = s_0, s_1, s_2, \ldots$
- Suffix of run π starting at s_k is denoted as $\pi^k = s_k, s_{k+1}, s_{k+2}, \ldots$
- K-th state of the run, is referred to as $\pi(k) = s_k$.

Semantics of $|T|$

Assumptions

- Let AP be a set of atomic propositions.
- Let π be a run of Kripke structure $M = (S, T, I, s_0)$.
- Let *ϕ*, *ψ* be syntactically correct LTL formulae.
- Let $p \in AP$ denote atomic proposition.

Semantics

$$
\pi \models p \quad \text{iff} \quad p \in I(\pi(0))
$$
\n
$$
\pi \models \neg \varphi \quad \text{iff} \quad \pi \not\models \varphi
$$
\n
$$
\pi \models \varphi \lor \psi \quad \text{iff} \quad \pi \models \varphi \text{ or } \pi \models \psi
$$
\n
$$
\pi \models X \varphi \quad \text{iff} \quad \pi^1 \models \varphi
$$
\n
$$
\pi \models \varphi \cup \psi \quad \text{iff} \quad \exists k.0 \leq k, \pi^k \models \psi \text{ and}
$$
\n
$$
\forall i.0 \leq i < k, \pi^i \models \varphi
$$

Semantics of Other Temporal Operators

$$
\pi \models F \varphi \quad \text{iff} \quad \exists k. k \ge 0, \pi^k \models \varphi
$$
\n
$$
\pi \models G \varphi \quad \text{iff} \quad \forall k. k \ge 0, \pi^k \models \varphi
$$
\n
$$
\pi \models \varphi R \psi \quad \text{iff} \quad (\exists k. 0 \le k, \pi^k \models \varphi \land \psi \text{ and } \forall i. 0 \le i < k, \pi^i \models \psi)
$$
\n
$$
\text{or} \quad (\forall k. k \ge 0, \pi^k \models \psi)
$$
\n
$$
\pi \models \varphi W \psi \quad \text{iff} \quad (\exists k. 0 \le k, \pi^k \models \psi \text{ and } \forall i. 0 \le i < k, \pi^i \models \varphi)
$$
\n
$$
\text{or} \quad (\forall k. k \ge 0, \pi^k \models \varphi)
$$
\n
$$
\text{or} \quad (\forall k. k \ge 0, \pi^k \models \varphi)
$$

LTL Model Checking

Verification Employing LTL

- System is viewed as a set of runs.
- System is satisfies LTL formula if and only if all system runs satisfy the formula.
- In other words, any run violating the formula is a witness that the system does not satisfy the formula.

Lemma

- If a finite state system does not satisfy an LTL formula then this may be witnessed with a **lasso-shaped** run.
- Run π is lasso-shaped if $\pi = \pi_1 \cdot (\pi_2)^{\omega}$, where

$$
\pi_1=s_0,s_1,\ldots,s_k
$$

 $\pi_2 = s_{k+1}, s_{k+2}, \ldots, s_{k+n}$, where $s_k \equiv s_{k+n}$.

Note that π^{ω} denotes infinite repetition of π .

Homework

- Model Peterson's mutual exclusion protocol in ProMeLa.
- State expected LTL properties of Peterson's protocol.
- Verify them using SPIN model checker.