IA169 System Verification and Assurance

CTL Model Checking

Jiří Barnat

Liner vs. Branching Time

Pnueli, 1977

- System is viewed as a set of state sequences **Runs**.
- System properties are given as properties of runs,
- \bullet ... and can be described with a linear-time logic.

Clarke & Emerson, 1980

- System is viewed as a branching structure of possible executions from individual system states — **Computation Tree**.
- System properties are given as properties of the tree,
- ... and can be described with a branching-time logic.

System and Computation Tree

Computation Tree Logic (CTL)

CTL Informally

Possible Future Computations

- For a given node of a computation tree, the sub-tree rooted in the given node describes all possible runs the system can still take.
- Every such a run is possible future computation.

CTL Formulae Allow For

- Specification of state qualities with atomic propositions.
- Quantify over possible future computations.
- Restrict the set of possible future computations with (quantified) LTL operators.

Example

- $\varphi \equiv EF(a)$
- It is possible to take a future computation such that a will hold true in the computation eventually.

Let AP by a set of atomic propositions.

- If $p \in AP$, then p is a CTL formula.
- If *ϕ* is a CTL formula, then ¬*ϕ* is a CTL formula.
- If *ϕ* and *ψ* are CTL formulae, then *ϕ* ∨ *ψ* is a CTL formula.
- If *ϕ* is a CTL formula, then EX *ϕ* is a CTL formula.
- If *ϕ* and *ψ* are CTL formulae, then E[*ϕ*U *ψ*] is a CTL formula.
- If *ϕ* and *ψ* are CTL formulae, then A[*ϕ*U *ψ*] is a CTL formula.

Alternatively (Backus-Naur Form)

$$
\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid EX \varphi \mid E[\varphi \ U \varphi] \mid A[\varphi \ U \varphi]
$$

Already Known

- The standard shortcuts from the propositional logic.
- Syntactic shortcuts from LTL
	- F *ϕ* ≡ true U *ϕ*
	- G *ϕ* ≡ ¬F ¬*ϕ*

Deduced CTL Operators

- \bullet *EF* $\varphi \equiv E$ [true *U* φ]
- AF *ϕ* ≡ A[true U *ϕ*]
- EG *ϕ* ≡ ¬AF ¬*ϕ*
- AG *ϕ* ≡ ¬EF ¬*ϕ*
- AX *ϕ* ≡ ¬EX ¬*ϕ*

Models of CTL formulae

Model of a CTL formula

- Let AP be a set of atomic propositions.
- Model of a CTL formula is a state $s \in S$ of Kripke structure $M = (S, T, I, s_0).$

Reminder

- Run of a Kripke structure is maximal path starting at the initial state of the structure.
- Finite maximal paths are viewed as infinite runs due to infinite repetition of the last state on the path.

Notation

- \bullet Let *s* ∈ *S* be a state of Kripke structure *M* = (S, T, I, s_0) .
- $P_M(s) = \{\pi \mid \pi \text{ is a run initiated at state } s\}$

Semantics of CTL

Assumptions

- Let AP be a set of atomic propositions.
- Let $p \in AP$ be an atomic proposition.
- \bullet Let *s* ∈ *S* be a state of Kripke structure *M* = (S, T, I, s_0) .
- Let *ϕ*, *ψ* denote syntactically correct CTL formulae.

Semantics

$$
s \models p \quad \text{iff} \quad p \in I(s)
$$
\n
$$
s \models \neg \varphi \quad \text{iff} \quad \neg(s \models \varphi)
$$
\n
$$
s \models \varphi \lor \psi \quad \text{iff} \quad s \models \varphi \text{ or } s \models \psi
$$
\n
$$
s \models EX \varphi \quad \text{iff} \quad \exists \pi \in P_M(s) . \pi(1) \models \varphi
$$
\n
$$
s \models E[\varphi \cup \psi] \quad \text{iff} \quad \exists \pi \in P_M(s). (\exists k \ge 0. (\pi(k) \models \psi \text{ and } \forall 0 \le i < k. \pi(i) \models \varphi))
$$
\n
$$
s \models A[\varphi \cup \psi] \quad \text{iff} \quad \forall \pi \in P_M(s). (\exists k \ge 0. (\pi(k) \models \psi \text{ and } \forall 0 \le i < k. \pi(i) \models \varphi))
$$

Atomic Propositions

AP={a*,* b*,* Req*,* Ack*,* Restart}

Express with CTL Formulae

- \bullet A state where a is true, but b is not, is reachable.
- \bullet Whenever system receives a request Reg , it generates acknowledgement Ack eventually.
- \bullet In every run there are infinitely many b's.
- There is always an option to reset the system (reach state Restart).

Model Checking CTL

Model Checking CTL

- Let $M = (S, T, I, s_0)$ be a Kripke structure.
- Let *ϕ* be a CTL formula.
- Does initial state of M satisfies *ϕ*?

Alternatively

- Let $M = (S, T, I, s_0)$ be a Kripke structure.
- Let *ϕ* be a CTL formula.
- Compute a set of states of M satisfying *ϕ*.

Above mentioned approaches are also referred to as to

- Local model checking problem $M, s_0 \models \varphi$.
- Global model checking problem $-$ {s | M, s $\models \varphi$ }.

Observation

• If the validity of formulae φ and ψ is known for all states, it is easy to deduce validity of formulae $\neg \varphi$, $\varphi \lor \psi$, $EX \varphi$,

CTL Model Checking – Sketch

- Let $M = (S, T, I)$ be a Kripke structure and φ a CTL Formula.
- A labelling function *label* : $S \rightarrow 2^{2^{\varphi}}$ is computed such that it gives validity of all sub-formulae of *ϕ* for all states of Kripke structure M.
- **o** Obviously, $s_0 \models \varphi \iff \varphi \in label(s_0)$.
- **•** Function *label* is computed gradually for individual sub-formulae of *ϕ*, starting with the simplest sub-formula and proceeding towards more complex sub-formulae, ending with *ϕ* itself.

Sub-formulae of a CTL Formula

Sub-formulae of formula *ϕ*

- Let *ϕ* be a CTL formula.
- The set of all sub-formulae of formula *ϕ* is denoted by 2*ϕ*.
- 2 *^ϕ* is defined inductively according to the structure of *ϕ*.

Inductive Definition of 2 *ϕ*

1)
$$
\varphi \in 2^{\varphi}
$$
 (φ is a sub-formula of φ)
\n2) If $\eta \in 2^{\varphi}$ and
\n• $\eta \equiv \neg \psi$, then $\psi \in 2^{\varphi}$
\n• $\eta \equiv \psi_1 \lor \psi_2$, then $\psi_1, \psi_2 \in 2^{\varphi}$
\n• $\eta \equiv EX \psi$, then $\psi \in 2^{\varphi}$
\n• $\eta \equiv EX \psi$, then $\psi \in 2^{\varphi}$
\n• $\eta \equiv F[\psi_1 U \psi_2]$, then $\psi_1, \psi_2 \in 2^{\varphi}$
\n• $\eta \equiv A[\psi_1 U \psi_2]$, then $\psi_1, \psi_2 \in 2^{\varphi}$

3) Nothing else.

Equivalent Existential Form of CTL

Observation

- Is is easier to proof validity of existential quantified modal operators than validity of universally quantified ones.
- For the purpose of verification of CTL-specified properties, it is possible to express the CTL formula in an equivalently expressive existential form of CTL.

Equivalent CTL Syntax

ϕ ::= p | ¬*ϕ* | *ϕ* ∨ *ϕ* | EX *ϕ* | E[*ϕ*U *ϕ*] | EG *ϕ*

Task

- Express formula EG *ϕ* in the original syntax of CTL.
- Give accordingly modified definition of the set of sub-formulae of φ for the above mentioned equivalent syntax.

```
INPUT: Kripke structure M = (S, T, I, s_0), CTL formula \varphi.
OUTPUT: True, if s_0 \models \varphi; False otherwise.
```

```
proc CTLMC(ϕ, M)
   label := ISolved := AP \cap 2^{\varphi}while \varphi \notin Solved do
            {\rm forceach} ( \eta \in {\{\neg \psi_1, \psi_1 \lor \psi_2, EX \psi_1, E[\psi_1 \cup \psi_2], EG \psi_1 \mid \psi_1, \psi_2 \in Solved\}})do
                if (\eta \in 2^{\varphi} \text{ and } \eta \notin \text{Solved})then label := updateLabel(\eta, label, M)
                           Solved := Solved ∪ {n}
                fi
            od
   od
   return (\varphi \in label(s<sub>0</sub>))
end
```

```
proc updateLabel(η, label, M)
   if (\eta \equiv E[\psi_1 U \psi_2])then return checkEU(ψ1, ψ2, label, M)
   fi
   if (\eta \equiv EG \psi)then return checkEG(ψ, label, M)
   fi
   foreach ( s \in S)do
      if (n \equiv \neg \psi and \psi \notin label(s)) or
         (\eta \equiv \psi_1 \lor \psi_2 \text{ and } (\psi_1 \in \text{label}(s) \lor \psi_2 \in \text{label}(s)) or
         (n \equiv EX \psi and (\exists t \in \{t \mid (s, t) \in T\} such that \psi \in label(t)))
         then label(s) := label(s) \cup \{\eta\}fi
   od
   return label
end
```
Algorithm for CTL Model-Checking E[*ψ*¹ U *ψ*2]

```
INPUT: Kripke structure M = (S, T, I),
                \sf{Labelling} function label : \sf{S} \to 2^\varphi, correct w.r.t validity of \psi_1 and \psi_2\mathsf{OUTPUT}\colon Labelling function label : \mathsf{S}\to 2^\varphi, correct w.r.t E[\psi_1 \ U \ \psi_2]proc checkEU(ψ1, ψ2, label, M)
  Q := \{s \mid \psi_2 \in \text{label}(s)\}\foreach ( s \in Q)do
      label(s) := label(s) \cup \{E[\psi_1 U \psi_2]\}od
  while (Q \neq \emptyset) do
          choose s \in QQ := Q \setminus \{s\}foreach (t \in \{t \mid T(t,s)\}) do /* all immediate predecessors */
             if (E[\psi_1 \cup \psi_2] \notin label(t) \land \psi_1 \in label(t))then label(t) := label(t) \cup {E[\psi_1 U \psi_2]}
                      Q := Q \cup \{t\}fi
          od
  od
   return label
end
```
Strongly Connected Components

Sub-graph

- Let $G = (V, E)$ be a graph, ie. $E \subseteq V \times V$.
- Graph $G' = (V', E')$ is called sub-graph of G if it holds that $V' \subseteq V$ and $E' = E \cap V' \times V'$.

 $\mathsf{Sub}\text{-}\mathsf{graph}$ $C = (V', E')$ of $G = (V, E)$ is called

- Strongly Connected Component, if $\forall u, v \in V'$ it holds that $(u, v) \in E'^*$ and $(v, u) \in E'^*$.
- Maximal Strongly Connected Component (SCC), if C is strongly connected component and for every $v \in (V \smallsetminus V')$ it is the case that $(V' \cup \{v\}, E \cap (V' \cup \{v\} \times V' \cup \{v\}))$ is not.
- Non-trivial SCC, if C is Strongly Connected Component and $E' \neq \emptyset$.

Algorithm for CTL Model-Checking EG *ψ*

```
INPUT: Kripke structure M = (S, T, I, s_0),
                             \sf{Labelling} function \sf{label} : S \to 2^\varphi, correct w.r.t. \psi\mathsf{OUTPUT:}\ \ \mathsf{Labelling}\ \mathsf{function}\ \mathsf{label} : \mathcal{S} \rightarrow 2^\varphi, \ \mathsf{correct}\ \mathsf{w.r.t.}\ \ \mathit{EG}\ \psiproc checkEG(ψ, label, M)
             S' := \{s \mid \psi \in \mathit{label}(s)\}\SCC := {C | C is non-trivial SCC G' = (S', T \cap S' \times S')}Q := \bigcup_{C \in SCC} \{ s \mid s \in C \}foreach (s \in Q)do
                 label(s) := label(s) \cup \{EG \psi\}od
             while Q \neq \emptyset do
                      choose s \in QQ := Q \setminus \{s\}\mathsf{for each}\; ( \; t \in (S' \cap \{t \;|\; \mathcal{T}(t,s)\}))do \quad \  \  \, \text{and}\; \mathsf{immediate}\; \mathsf{predecessors}\; \mathsf{in}\; S' \; \,\textrm{``}\, \textcolor{red}{\mid}if EG \psi \notin label(t)then label(t) := label(t) \cup \{EG \psi\}Q := Q \cup \{t\}fi
                      od
             od
          end
IA169 System Verification and Assurance – 07 str. 20/34
```
Observation

- Every CTL formula *ϕ* is made of at most | *ϕ* | sub-formulae.
- Decomposition of every sub-graph of $G = (S, T)$ into SCCs can be done in time $\mathcal{O}(|S| + |T|)$.
- Every call to updateLabel terminates in time $\mathcal{O}(|S|+|T|)$.

Overall complexity

Algorithm CTLMC exhibits O(| *ϕ* || S |) space and $O(|\varphi| (|S| + |T|))$ time complexity.

Example: Microwave oven $AG(Start \implies AF(Heat))$

IA169 System Verification and Assurance – 07 str. 22/34

Example: Microwave oven $AG(Start \implies AF(Heat))$

Transformation of formula $\varphi \equiv AG(Start \implies AF(Heat))$

- $AG(Start \implies AF(Heat))$
- \bullet AG($\neg(Start \land \neg AF(Heat)))$
- \bullet AG($\neg(Start \wedge EG(\neg Heat)))$
- $\bullet \neg EF(Start \land EG(\neg Heat))$
- $\bullet \neg E$ [true U (Start $\land EG(\neg Heat))$]

Validity of sub-formulae $[S(\varphi) = \{s \mid s \models \varphi\}]$

- \bullet $S(Start) = \{2, 5, 6, 7\}$
- $S(Heat) = \{4, 7\}$
- \bullet $S(\neg Heat) = \{1, 2, 3, 5, 6\}$
- \bullet $S(EG(\neg Heat)) = \{1, 2, 3, 5\}$
- S(Start ∧ EG(¬Heat)) = {2*,* 5}
- $S(E[true U (Start ∧ EG(\neg Heat))]) = {1, 2, 3, 4, 5, 6, 7}$
- \bullet S($\neg E[true \cup (Start \land EG(\neg Heat))] = \emptyset$

IA169 System Verification and Assurance – 07 str. 23/34

CTL[∗]

IA169 System Verification and Assurance – 07 str. 24/34

CTL[∗] as Extension of CTL

Observation

Every use of temporal operator in a formula of CTL must be immediately preceded with a quantifier, i.e. use of a modal operator without quantification is not possible.

Logic CTL[∗]

- Branching time logic.
- Similar to CTL.
- Unlike CTL, allows for standalone use of modal operators.

Example

 $A[p \wedge X(\neg p)]$ is CTL^{*}, but is not CTL formula.

Types of CTL[∗] **formulae**

- \bullet Quantifiers E and A are standalone operators in syntax construction rules. As a result there are two types of formulae in CTL: **path** and **state** formulae.
- Application of E and A operators on a path formula (formula of which model is a run of Kripke structure) results in a state formula (formula of which model is a state of Kripke structure)

Syntax of CTL[∗]

state formula $\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid E \psi$ path formula $\psi ::= \varphi \mid \neg \psi \mid \psi \vee \psi \mid X \psi \mid \psi U \psi$

Semantics of CTL[∗]

Assumption

- Let AP be a set of atomic propositions, and $p \in AP$.
- Let $M = (S, T, I)$ be a Kripke structure.
- Let *ϕ*ⁱ denote CTL[∗] state formulae, and *ψ*ⁱ denote CTL[∗] state formulae.

Semantics

$$
M, s \models p \quad \text{iff} \quad p \in I(s)
$$
\n
$$
M, s \models \neg \varphi_1 \quad \text{iff} \quad \neg (M, s \models \varphi_1)
$$
\n
$$
M, s \models \varphi_1 \lor \varphi_2 \quad \text{iff} \quad M, s \models \varphi_1 \text{ or } M, s \models \varphi_2
$$
\n
$$
M, s \models E \psi_1 \quad \text{iff} \quad \exists \pi \in P_M(s). \pi \models \psi_1
$$
\n
$$
M, \pi \models \varphi_1 \quad \text{iff} \quad M, \pi(0) \models \varphi_1
$$
\n
$$
M, \pi \models \neg \psi_1 \quad \text{iff} \quad \neg (M, \pi \models \psi_1)
$$
\n
$$
M, \pi \models \psi_1 \lor \psi_2 \quad \text{iff} \quad M, \pi \models \psi_1 \text{ or } M, \pi \models \psi_2
$$
\n
$$
M, \pi \models X \psi_1 \quad \text{iff} \quad M, \pi^1 \models \psi_1
$$
\n
$$
M, \pi \models \psi_1 U \psi_2 \quad \text{iff} \quad \exists k \ge 0. (M, \pi^k \models \psi_2 \text{ and } \forall 0 \le i < k.M, \pi^i \models \psi_1)
$$

Comparison of Expressive Power of LTL, CTL and CTL[∗]

Model Unification

Observation

- Every LTL formula is a CTL^{*} path formula.
- Every CTL formula is a CTL[∗] state formula.
- Model of a path formula is a run of Kripke structure.
- Model of a state formula is a state of Kripke structure.
- Not very suitable for comparison.

Model Unification

- For the purpose of comparison we define how a CTL^{*} path formula is evaluated in a state of Kripke structure.
- Let *ψ* be CTL[∗] path formula, then

$$
M, s \models \psi \quad \text{iff} \quad M, s \models A \psi
$$

Motivation

Goals

- We intend to find out whether there are properties (formulae) that can be expressed in one of the logic, but cannot be expressed in another one.
- We intend to find out in which logic more properties can be expressed.
- We intend to identify concrete properties, that cannot be expressed in some other logic, i.e. to find out a formula of logic \mathcal{L}_1 , for which an equivalent formula of logic \mathcal{L}_2 does not exist.

Formula Equivalence

Formulae *ϕ* and *ψ* are equivalent if and only if for any possible Kripke structure $M = (S, T, I, s_0)$ and any state $s \in S$ it is true that

$$
M, s \models \varphi \quad \text{iff} \quad M, s \models \psi.
$$

Equivalently Expressive

• Temporal logic \mathcal{L}_1 and \mathcal{L}_2 have the same expressive power, if for all Kripke structures $M = (S, T, I, s_0)$ and states $s \in S$ it holds that

$$
\forall \varphi \in \mathcal{L}_1.(\exists \psi \in \mathcal{L}_2.(M, s \models \varphi \iff M, s \models \psi)) \qquad (1)
$$

$$
\wedge \forall \psi \in \mathcal{L}_2.(\exists \varphi \in \mathcal{L}_1.(M, s \models \varphi \iff M, s \models \psi)).\tag{2}
$$

Less Expressiveness

• If only statement (1) is valid, then logic \mathcal{L}_1 is less expressive than logic \mathcal{L}_2 , and vice versa.

Theorem

- LTL and CTL are incomparable in expressive power.
	- 1) $AG(EF(q))$ is a CTL formula that cannot be expressed in LTL.
	- 2) $FG(q)$ is an LTL formula that cannot be expressed in CTL.

Example – Proof Sketch for 1)

• Find two different Kripke structures and identify two states that can be differentiated with CTL formula $AG(EF(q))$, but cannot be differentiated with any LTL formula (they generate the same set of runs).

Example – Intuition behind 2) [proof is too complex]

• Show that CTL formula $AF(AG(q))$ is not equivalent to LTL formula $FG(q)$.

Comparison of LTL, CTL, and CTL[∗]

Consequence

- CTL[∗] is strictly more expressive than LTL.
	- Every LTL formula is a CTL[∗] formula.
	- CTL^{*} formula $AG(EFq)$ is not expressible in LTL.

Consequence 2

- CTL[∗] is strictly more expressive than CTL.
	- Every CTL formula is a CTL[∗] formula.
	- CTL^{*} formula $FG(q)$ is not expressible in CTL.

Observation

- There are properties expressible on both LTL and CTL.
	- CTL formula $A[p U q]$ is equivalent to LTL formula $p U q$.

Homework

- Solve The wolf, goat and cabbage problem with NuSMV
- Moshe Vardi: Branching vs. Linear Time: Final Showdown