
IA169 System Verification and Assurance

Bounded Model Checking

Jiří Barnat

Reminder – SAT and SMT

Satisfiability – SAT
Finding a valuation of Boolean variables that makes a
given formula of propositional logic true.

Satisfiability Modulo Theory – SMT
Deciding satisfiability of a first-order formula with
equality, predicates and function symbols that encode one
or more theories.

Typical SMT Theories
Unbounded integer and real arithmetic.
Bounded integer arithmetic (bit-vectors).
Theory of data structures (lists, arrays, . . .).

IA169 System Verification and Assurance – 09 str. 2/31

Reminder – SAT and SMT Solvers

ZZZ aka Z3
Tool developed by Microsoft Research.
WWW interface — http://www.rise4fun.com/Z3
Binary API for use in other tools and applications.

SMT-LIB
Standardised language for SMT queries.
Freely available library with a SMT implementation.

IA169 System Verification and Assurance – 09 str. 3/31

http://www.rise4fun.com/Z3

Reminder – Satisfiability and Validity

Observation
Formula is valid if and only if its negation is not satisfiable.

Consequence
SAT and SMT solvers can be used as tools for proving
validity of formulated statements.

Model Synthesis
SAT solvers not only decide satisfiability of formulas, but
for satisfiable formulas also give the valuation which
makes the formula true.
Unlike theorem provers, they give a "counterexample" in
case the statement to be proven is false.

IA169 System Verification and Assurance – 09 str. 4/31

Section

Checking Safety Properties via SAT Reduction

IA169 System Verification and Assurance – 09 str. 5/31

Bounded Model Checking (BMC)

Hypothesis
If the system contains an error, it can be reproduced with
only a small number of controlled steps.

Method Idea
If we use model checking for error detection, it is sensible
to check whether an error (a violation of specification)
appears within first k steps of execution.

Literature
Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu:
Symbolic Model Checking without BDDs. TACAS 1999: 193-207, LNCS
1579.
Henry A. Kautz, Bart Selman: Planning as Satisfiability.Proceedings of
the 10th European conference on Artificial intelligence (ECAI’92):
359-363, 1992, Kluwer.

IA169 System Verification and Assurance – 09 str. 6/31

Reduction of BMC to SAT

Prerequisites
The set of prefixes of length k of all runs of a Kripke
structure M can be encoded by a Boolean formula [M]k .
Violation of a safety property which can be observed
within k steps of the system can be encoded as [¬ϕ]k .

Reduction to SAT
We check the satisfiability of [M]k ∧ [¬ϕ]k .
Satisfiability indicates the existence of a counterexample
of length k .
Unsatisfiability shows non-existence of a counterexample
of length k .

IA169 System Verification and Assurance – 09 str. 7/31

Kripkeho structure as a Boolean formula

Prerequisites
Let M = (S,T , I) be a Kripke structure with initial state
s0 ∈ S.
Arbitrary state s ∈ S can be represented by a bit vector of
size n, that is state s = 〈a0, a1, . . . , an−1〉.

Encoding M with Boolean Formulae
Init(s) – formula which is satisfiable for the valuation of
variables a1, a2, ..., an that describe the state s0.

Trans(s, s ′) – a formula which is satisfiable for a pair of
state vectors s, s ′, iff the valuations
a1, a2, ..., an, a′1, a′2, ..., a′n describe states between which a
transition (s, s ′) ∈ T exists.

IA169 System Verification and Assurance – 09 str. 8/31

Encoding Finite Runs of M

Description of System Runs of Length k
Run of length k consists of k + 1 states s0, s1, . . . , sk .
The set of all runs of size k of the structure M is
designated [M]k and described by the following formula:

[M]k ≡ Init(s0) ∧
k∧

i=1
Trans(si−1, si)

Example[M]3 ∧ [¬ϕ]3

Init(s0)∧Trans(s0, s1)∧Trans(s1, s2)∧Trans(s2, s3)∧¬ϕ(s3)

IA169 System Verification and Assurance – 09 str. 9/31

Section

Completeness of BMC

IA169 System Verification and Assurance – 09 str. 10/31

Completeness of BMC for Detecting Safety Violations

Problem – Undetected Violation of a Safety Property
The violation is not reachable using a path of length k .
Paths shorter than k are not encoded in [M]k .

Upper Bound on k
If k ≥ d where d is the graph diameter, all possible error
locations are covered.
The diameter of the graph is bounded by 2n, where n is
the number of bits of the state vector.

Solution
Executing BMC iteratively for each k ∈ [0, d].

IA169 System Verification and Assurance – 09 str. 11/31

Automated Detection of Graph Diameter

Facts
Asking the user is unrealistic.
Safe upper bounds are extremely overstated.
We would like the verification procedure itself to detect
whether k should be increased further.

Skeleton of an Algorithm for Complete BMC
k = 0
while (true) do
if (counterexample of length k exists)
then return "Invalid"

if (all states are reachable within k steps)
then return "Valid"

k = k + 1
od

IA169 System Verification and Assurance – 09 str. 12/31

Notation I

Prerequisites
Kripke structure M = (S,T , I).
States are described by bit vectors of fixed length.
Trans is a SAT representation of a binary relation T .

Path of Length n

path(s[0..n]) ≡
∧

0≤i<n
Trans(si , si+1)

Validity of Statement Q Along the Entire Path

all .Q(s[0..n])

IA169 System Verification and Assurance – 09 str. 13/31

Notation II

A Loop-Free Path

loopFree(s[0..n]) ≡ path(s[0..n]) ∧
∧

0≤i<j≤n
si 6= sj

Existence of a Path of Length n From s0 to sn

pathn(s0, sn) ≡ ∃s1 . . . sn−1.path(s[0..n])

Shortest Path

shortest(s[0..n]) ≡ path(s[0..n]) ∧ ¬
(∨
0≤i<n

pathi(s0, sn)
)

IA169 System Verification and Assurance – 09 str. 14/31

Equivalent Problem Formulation

Verification
We would like to show that no state that would violate
the specification ϕ is reachable from the initial
configuration, i.e. we want to show that

∀i .∀s0 . . . si .
(
Init(s0) ∧ path(s[0..i]) =⇒ ϕ(si)

)
Alternatively

We want to show that from an error state, the initial state
is not reachable when going backwards

∀i .∀s0 . . . si .
(
Init(s0)⇐= path(s[0..i]) ∧ ¬ϕ(si)

)
Equivalently

∀i .∀s0 . . . si . ¬
(
Init(s0) ∧ path(s[0..i]) ∧ ¬ϕ(si)

)
IA169 System Verification and Assurance – 09 str. 15/31

Termination of BMC – Acyclic Paths

Termination Condition in the BMC Algorithm Skeleton
No longer acyclic path from the initial state exists, that is,
the following formula is unsatisfiable:

Init(s0) ∧ loopFree(s[0..i+1])

Holds symmetrically for backwards reachability from
error states.

Solution 1
not SAT

(
loopFree(s[0..i+1]) ∧ Init(s0)

)
∨
not SAT

(
loopFree(s[0..i+1]) ∧ ¬ϕ(si+1)

)

IA169 System Verification and Assurance – 09 str. 16/31

Termination of BMC – Acyclic paths II

Higher Efficiency Termination Criterion
When using backward reachability from ¬ϕ states, paths
that visit other ¬ϕ states do not need to be considered.
Symmetrically holds also for forward reachability with
multiple initial states: for completeness detection, paths
that visit other initial states do not need to be considered.

Solution 2
not SAT

(
loopFree(s[0..i+1])∧ Init(s0)∧all .¬Init(s[1..i+1])

)
∨
not SAT

(
loopFree(s[0..i+1]) ∧ ¬ϕ(si+1) ∧ all .ϕ(s[0..i])

)

IA169 System Verification and Assurance – 09 str. 17/31

BMC not starting with k = 0

Observation
For small values of k , SAT queries give neither a
counterexample nor enable termination.
We want to start BMC with k > 0.

Reformulating the Counterexample Test
The original test for counterexample existence for a given
k

SAT
(
Init(s0) ∧ path(s[0..k]) ∧ ¬ϕ(sk)

)
needs to be changed so that we do not miss
counterexamples shorter than the initial value of k .
New test for the existence of a counterexample:

SAT
(
Init(s0) ∧ path(s[0..k]) ∧ ¬all .ϕ(s[0..k])

)
IA169 System Verification and Assurance – 09 str. 18/31

k-induction in BMC

Observation
The tests can be re-formulated so that they resemble the
structure of mathematical induction.
TAUT is a tautology test (unsatisfiability of negation).

Base Case
Test for counterexample existence.

SAT
(
¬
(

Init(so) ∧ path(s[0..i]) =⇒ all .ϕ(s[0..i])
))

Inductive Step
Test for completeness.
TAUT

(
¬Init(s0)⇐= all .¬Init(s[1..(i+1)]) ∧ loopFree(s[0..i+1])

)
∨
TAUT

(
loopFree(s[0..i+1]) ∧ all .ϕ(s[0..i]) =⇒ ϕ(si+1)

)
IA169 System Verification and Assurance – 09 str. 19/31

Acyclic vs Shortest Paths in BMC

Observation
Graph diameter (d) is the length of the longest of the
shortest paths between each pair of vertices in the graph.
An acyclic path can be substantially longer than the graph
diameter.

BMC with Shortest Paths
BMC is correct if loopFree is replaced with shortest.
The shortest predicate, however, needs quantifiers and is
as such not a purely SAT application.

For more details, see ...
Mary Sheeran, Satnam Singh, and Gunnar Stålmarck: Checking Safety
Properties Using Induction and a SAT-Solver, FMCAD 2000, 108-125,
LNCS 1954, Springer.

IA169 System Verification and Assurance – 09 str. 20/31

Section

LTL and BMC

IA169 System Verification and Assurance – 09 str. 21/31

LTL Verification with BMC

Observation 1
LTL is only well-defined for infinite runs.
For evaluating LTL on finite paths, we use three-value
logic (true, false, cannot say).
Validity of some LTL formulas cannot be decided on any
finite path (eg. GF a).

Observation 2
Cycles that consist of only a few states are unrolled by
BMC to acyclic paths of length k .
We allow encoding lasso-shaped paths.
That is, (k , l)-cyclic paths.

IA169 System Verification and Assurance – 09 str. 22/31

(k,l)-cyclic paths

(k,l)-cyclic runs
A run π = s0s1s2 . . . of a Kripke structure
M = (S,T , I , s0) is (k , l)-cyclic if

π = (s0s1s2 . . . sl−1)(sl . . . sk)ω,

where 0 < l ≤ k a sl−1 = sk .

Observation
If π is (k , l)-cyclic, π is also (k + 1, l + 1)-cyclic.
Treating finite paths as (k , k)-cyclic is incorrect (could
create a non-existent run in M).
Every path of length k is either acyclic or (k , l)-cyclic.

IA169 System Verification and Assurance – 09 str. 23/31

Semantics of LTL on Finite Prefixes of Runs

Semantics of LTL for Finite Prefixes
Let π be a run of a Kripke structure M.
k is given.
π = π0

πi |=nl X ϕ iff i < k ∧ πi+1 |=nl ϕ

πi |=nl ϕU ψ iff ∃j .i ≤ j ≤ k , πj |=nl ψ and
∀m.i ≤ m < j , πi |=nl ϕ

Semantics of |=k for LTL in BMC
For (k , l)-cyclic paths, π |=k ϕ ⇐⇒ π |= ϕ holds.
For acyclic paths, π |=k ϕ ⇐⇒ π0 |=nl ϕ holds.
|=k=⇒|=k+1, |=k approximates |=

IA169 System Verification and Assurance – 09 str. 24/31

BMC for LTL

Goal
We construct a Boolean formula [M, ϕ, k] which is
satisfiable iff Kripke structure M has a run π such that
π |=k ϕ.
[M, ϕ, k] ≡ [M]k ∧ [ϕ, k]

Encoding
[M]k encodes all paths of length k
[ϕ, k] ≡ _[ϕ, k]0 ∨

∨k
l=1 l [ϕ, k]0

_[ϕ, k]0 encodes that the path is acyclic and |=nl ϕ

l [ϕ, k]0 encodes that the path is (k , l)-cyclic and |= ϕ

IA169 System Verification and Assurance – 09 str. 25/31

LTL tricks in BMC

Fragment LTL-X
Reduces the number of transitions (smaller SAT instance).
Similar to partial order reduction.

For the Interested
Keijo Heljanko: Bounded Model Checking for Finite-State Systems
http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf

Keijo Heljanko and Tommi Junttila: Advanced Tutorial on Bounded
Model Checking
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/
lecture1.pdf

IA169 System Verification and Assurance – 09 str. 26/31

http://users.ics.aalto.fi/kepa/qmc/slides-heljanko-2.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf
http://users.ics.aalto.fi/kepa/acsd06-atpn06-bmc-tutorial/lecture1.pdf

Section

Conclusions on BMC

IA169 System Verification and Assurance – 09 str. 27/31

Advantages of BMC

General
Reduces to a standard SAT problem, advances in SAT
solving help with BMC.
Often finds counterexamples of minimal length (not
always).
Boolean formulas can be more compact than OBDD
representation.

Verification of HW
Thanks to k-induction, a very successful method.

Verification of SW
Currently, according to Software Verification Competition
(TACAS 2014), BMC in connection with SMT is currently
among the best software verification methods (actually
falsification).

IA169 System Verification and Assurance – 09 str. 28/31

Downsides of BMC

General
Not complete in general.
Large SAT instances are still unsolvable.

Verification of SW
Encoding an entire CFG as a SAT instance is currently
unrealistic.
K-induction cannot be used
(the graph is incomplete, no back edges).
Problems with dynamic data structure analysis.
Loop analysis is hard.
Inefficient for full arithmetic (partially solved by SMT).

IA169 System Verification and Assurance – 09 str. 29/31

Tools and food for thought...

Tools
CBMC – BMC for ANSI-C.
ESBMC – uses SMT, built on top of CBMC.
LLBMC – BMC for LLVM bitcode.

Food for Thought...
What differentiates modern SMT-BMC from symbolic
execution?
Boundaries are not clear.

IA169 System Verification and Assurance – 09 str. 30/31

Homework

Homework
Study structure and results of Software Verification
Competition (TACAS).

IA169 System Verification and Assurance – 09 str. 31/31

