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Motivation example

Fail-repair system

idle working done

repair error

start end
bug

service

ok

reset

What are the properties of the model?

G(working =⇒ F done) NO

G(working =⇒ F error) NO

FG(working ∨ error ∨ repair) NO
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Motivation example

Fail-repair system

idle working done

repair error

start
0.95

end
bug

0.05

service

ok

reset

What is the probability of reaching “done” from “working” with no
visit of “error”?

What is the probability of reaching “done” from “working” with at
most one visit of “error”?

What is the probability of reaching “done” from “working”?
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Section

Discrete-time Markov Chains (DTMC)
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Probabilistic models

Discrete-time Markov Chains (DTMC)

Standard model for probabilistic systems.

State-based model with probabilities on branching.

Based on the current state, the succeeding state is given by a
discrete probability distribution.

Markov property (“memorylessness”) — only the current state
determines the successors (the past states are irrelevant).

Probabilities on outgoing edges sums to 1 for each state.

Hence, each state has at least one outgoing edge (“no deadlock”).
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DTMC examples

Model of a queue

0 1 2 3 4
1/3 1/3 1/3 1/3

2/32/32/32/3

2/3 1/3

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

What if a new items comes with probability p = 1/2 and an item is
consumed with probability q = 2/3?
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DTMC examples

Model of the new queue

0 1 2 3 4
p p(1− q) p(1− q) p(1− q)

qq(1− p)q(1− p)q(1− p)

1− p 1− q
(1−p)(1−q)

+ pq
(1−p)(1−q)

+ pq
(1−p)(1−q)

+ pq
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DTMC - formal definition

Discrete-time Markov Chain is given by

a set of states S,

an initial state s0 of S,

a probability matrix P : S × S → [0, 1], and

an interpretation of atomic propositions I : S → AP.

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
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Back to our questions

Fail-Repair System

idle working done

repair error

1 0.95
0.05

1

1

1

What is the probability of reaching “done” from “working”
with no visit of “error”?
What is the probability of reaching “done” from “working”
with at most one visit of “error”?
What is the probability of reaching “done” from “working”?
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Markov chain analysis

Transient analysis
distribution after k-steps
reaching/hitting probability
hitting time

Long run analysis
probability of infinite hitting
stationary (invariant) distribution
mean inter visit time
long run limit distribution
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Section

Property Specification
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Property specification languages
Recall some non-probabilistic specification languages:

LTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕU ϕ

CTL formulae

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX ϕ | E [ϕU ϕ] | EG ϕ

Syntax of CTL∗

state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E ψ
path formula ψ ::= ϕ | ¬ψ | ψ ∨ ψ | X ψ | ψU ψ
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Property specification languages
We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL
state formula ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | P./bψ

path formula ψ ::= X ϕ | ϕU ϕ | ϕU≤k ϕ

where
b ∈ [0, 1] is a probability bound,
./∈ {≤, <,≥, >}, and
k ∈ N is a bound on the number of steps.

A PCTL formula is always a state formula.

αU≤k β is a bounded until saying that α holds until β within k steps.
For k = 3 it is equivalent to β ∨ (α ∧ X β) ∨ (α ∧ X (β ∨ α ∧ X β)).

Some tools also supports P=?ψ asking for the probability that the
specified behaviour will occur.
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PCTL examples
We can also use derived operators like G , F , ∧, ⇒, etc.

idle working done

repair error

1 0.95
0.05

1

1

1

Probabilistic reachability P≥1(F done )
probability of reaching the state done is equal to 1

Probabilistic bounded reachability P>0.99(F≤6 done )
probability of reaching the state done in at most 6 steps is > 0.99

Probabilistic until P<0.96( (¬error)U (done) )
probability of reaching done with no visit of error is less than 0.96
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Qualitative vs. quantitative properties
Qualitative PCTL properties

P./b ψ where b is either 0 or 1

Quantitative PCTL properties
P./b ψ where b is in (0, 1)

In DTMC where zero probability edges are erased, it holds that
P>0(X ϕ) is equivalent to EX ϕ

there is a next state satisfying ϕ
P≥1(X ϕ) is equivalent to AX ϕ

the next states satisfy ϕ
P>0(F ϕ) is equivalent to EF ϕ

there exists a finite path to a state satisfying ϕ
but

P≥1(F ϕ) is not equivalent to AF ϕ
There is no CTL formula equivalent to P≥1(F ϕ),
and no PCTL formula equivalent to AF ϕ.
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How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Probability in the k-th state when starting in 1[
1 0 0 0 0

]
× P =

[
0 1 0 0 0

]
[
1 0 0 0 0

]
× P2 =

[
0 0 0.05 0 0.95

]
[
1 0 0 0 0

]
× P3 =

[
0 0 0 0.05 0.95

]
[
1 0 0 0 0

]
× P4 =

[
0 0.05 0 0 0.95

]
[
1 0 0 0 0

]
× P5 =

[
0 0 0.0025 0 0.9975

]
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How the transient probabilities are computed?

1 2 5

4 3

1 0.95

0.05

1
1 1

P =


0 1 0 0 0
0 0 0.05 0 0.95
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


Probability of being in 5 or 2 in the k-th state

P ×
[
0 1 0 0 1

]T
=

[
1 0.95 0 1 1

]T

P2 ×
[
0 1 0 0 1

]T
=

[
0.95 0.95 1 0.95 1

]T

P3 ×
[
0 1 0 0 1

]T
=

[
0.95 1 0.95 0.95 1

]T

P4 ×
[
0 1 0 0 1

]T
=

[
1 0.9975 0.95 1 1

]T

P5 ×
[
0 1 0 0 1

]T
=

[
0.9975 0.9975 1 0.9975 1

]T
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Unbounded reachability - optional slide

Unbounded reachability
Let p(s,A) be the probability of reaching a state in A from s.

It holds that:
p(s,A) = 1 for s ∈ A
p(s,A) =

∑
s′∈succ(s) P(s, s ′) ∗ p(s ′,A) for s 6∈ A

where succ(s) is a set of successors of s and P(s, s ′) is the
probability on the edge from s to s ′.

Theorem
The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.
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Section

Long Run Analysis
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Long run analysis

1 2 5

4 3

1 0.95

0.05

1
1 1

Recall that we reach the state 5(done) with probability 1.

1 2 5

4 3

1 0.95

0.05

1
1

0.5

0.5

What are the states visited infinitely often with probability 1?
IA169 System Verification and Assurance – 12 20/31



Transient and recurrent states

Definitions
A state of DMTC is called transient iff there is a positive
probability that the system will not return back to this state.
A state s of DMTC is called recurrent iff, starting from s, the
system eventually returns back to the s with probability 1.

Theorem
Every transient state is visited finitely many times with
probability 1.
Each recurrent state is with probability 1 either not visited or
visited infinitely many times.1

1This holds only in DTMC models with finitely many states.
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Transient vs. recurrent states

Which states are transient? Which states are recurrent?

Decompose the graph
representation onto
strongly connected
components.

Theorem 1

A state is recurrent if and only if it is in a bottom strongly
connected component. All other states are transient.

1This holds only in DTMC models with finitely many states.
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Irreducible Markov Chain

For the sake of infinite behaviour, we will concentrate on bottom
strongly connected components only.

Definition
A Markov chain is said to be irreducible if every state can be
reached from every other state in a finite number of steps.

Theorem
A Markov chain is irreducible if and only if its graph
representation is a single strongly connected component.

Corollary
All states of a finite irreducible Markov chain are recurrent.
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Stationary (Invariant) Distribution

Definition
Let P be the transition matrix of a DTMC and ~λ be a
probability distribution on its states. If

~λP = ~λ,

then ~λ is a stationary (or steady-state or invariant or
equilibrium) distribution of the DTMC.

Question:
How many stationary distributions can a Markov chain have?
Can it be more than one?
Can it be none?
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Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard’s
walk

1 2 3 4
1/2 1/2

1 1
1/2

1/2

both (1, 0, 0, 0) and (0, 0, 0, 1) are stationary distributions.

But, this is not an irreducible Markov chain.
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Stationary Distributions

Theorem
In every finite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?
Theorem

For each finite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a finite
irreducible Markov chain?
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Stationary Distribution & Cut-sets

Again, we can construct a set of equations that express the result.

Theorem
Let P be a transition matrix of a finite irreducible DTMC and
~π = (π1, π2, . . . , πn) be a stationary distribution corresponding
to P. For any state i of the DTMC, we have∑

j 6=i
πjPj,i =

∑
j 6=i

πiPi ,j .
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Mean Portion of Visited States and Inter Visit Time

Theorem
Let us have a finite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = limn→∞E ( # of visits of state i during the first n steps)/n.

Let us have a finite irreducible DTMC and the unique
stationary distribution ~π. It holds that

πi = 1/mi

where mi is the mean inter visit time of state i .
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Aperiodic Markov Chains
For example:

aperiodic periodic

Definition
A state s is periodic if there exists an integer ∆ > 1 such
that length of every path from s to s is divisible by ∆.
A Markov chain is periodic if any state in the chain is
periodic.
A state or chain that is not periodic is aperiodic.
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Aperiodic Markov Chains

Theorem
Let us have a finite aperiodic irreducible DTMC and the
unique stationary distribution ~π. It holds that

~π = limn→∞~λPn

where ~λ is an arbitrary distribution on states.

Q: What this is good for?
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DTMC Extensions - Communication and Nondeterminism

Last remark on some DTMC extensions.

Modules and synchronisation
modules
actions
rewards

Decision extension
Markov Decision Processes (MDP)
Pmin and Pmax properties
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