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Motivation example

Fail-repair system

service

reset

What are the properties of the model?

@ G(working = F done) NO
@ G(working = F error) NO
@ FG(working V error V repair) NO
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Motivation example

Fail-repair system

service

@ What is the probability of reaching “done” from “working” with no
visit of “error”?

@ What is the probability of reaching “done” from “working” with at
most one visit of “error”?

@ What is the probability of reaching “done” from "working"?
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Discrete-time Markov Chains (DTMC)
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Probabilistic models

Discrete-time Markov Chains (DTMC)
@ Standard model for probabilistic systems.
@ State-based model with probabilities on branching.

@ Based on the current state, the succeeding state is given by a
discrete probability distribution.

@ Markov property (“memorylessness”) — only the current state
determines the successors (the past states are irrelevant).

@ Probabilities on outgoing edges sums to 1 for each state.

@ Hence, each state has at least one outgoing edge (“no deadlock™).
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DTMC examples

Model of a queue

Queue for at most 4 items. In every time tick, a new item comes with
probability 1/3 and an item is consumed with probability 2/3.

What if a new items comes with probability p = 1/2 and an item is
consumed with probability g = 2/37
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DTMC examples

Model of the new queue

(1-p)(1—q) (1-p)(1-q) (1-p)(1-q)
1-p + pq + pq + pq 1-g¢q
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DTMC - formal definition

Discrete-time Markov Chain is given by
@ a set of states S,
@ an initial state sy of S,
@ a probability matrix P: S x S — [0,1], and

@ an interpretation of atomic propositions [ : S — AP.

01 0 0 O

° e 0 0 0.05 0 0.95
bos ol o o o

1 \./b95 0 0 0 0 1
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Back to our questions

Fail-Repair System

@ What is the probability of reaching “done” from “working”
with no visit of “error”?

@ What is the probability of reaching “done” from “working”
with at most one visit of “error”?

@ What is the probability of reaching “done” from “working”?
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Markov chain analysis

Transient analysis
o distribution after k-steps
e reaching/hitting probability
@ hitting time

Long run analysis
@ probability of infinite hitting
@ stationary (invariant) distribution
@ mean inter visit time

@ long run limit distribution
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Property Specification
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Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

pu=plopleVe | Xe|leUe

CTL formulae

pu=plopleVe | EXp|ElpUp] | EGy

Syntax of CTL*

state formula pou=plopleVel EY
path formula Y= |l YVyY | XY | YUy
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Property specification languages

We need to quantify probability that a certain behaviour will occur.
Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

state formula pu=p|op| Vel Pt
path formula Vvi=Xep|oUp|eUSkep
where
e b e 0,1] is a probability bound,
o e {<, <, >, >}, and
@ k € N is a bound on the number of steps.

A PCTL formula is always a state formula.

a USK B is a bounded until saying that « holds until 8 within k steps.
For k =3 it is equivalent to BV (e AXB) V(e AX(BVaAnXp)).

Some tools also supports P—;1) asking for the probability that the

specified behaviour will occur.
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PCTL examples

We can also use derived operators like G, F, A, =, etc.

Probabilistic reachability P~i( F done)

@ probability of reaching the state done is equal to 1
Probabilistic bounded reachability P-¢.g9( F=° done)

@ probability of reaching the state done in at most 6 steps is > 0.99
Probabilistic until P gs( (—error) U (done))

@ probability of reaching done with no visit of error is less than 0.96
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Qualitative vs. quantitative properties

Qualitative PCTL properties
@ P.op 1) where b is either 0 or 1

Quantitative PCTL properties
® P where bis in (0,1)

In DTMC where zero probability edges are erased, it holds that
@ P-o( X ) is equivalent to EX ¢
o there is a next state satisfying ¢
e P>1(X ) is equivalent to AX ¢
e the next states satisfy ¢
@ P-o( F ) is equivalent to EF ¢
e there exists a finite path to a state satisfying ¢

but
e P>1( F ) is not equivalent to AF ¢

There is no CTL formula equivalent to P>1( F ),
and no PCTL formula equivalent to AF ¢.
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How the transient probabilities are computed?

01 0

g 9 0 0 005
005 P=10 0 0
01 0

1\/{)95 00 0

Probability in the k-th state when starting in 1

1

0

0

0

100 0 0
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ol
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xP:[o 100 0}
><P2:[o 0 0.05 0 0.95}

xP3=1[0 0 0 0.05 0.95}

L
x P = [o 0.05 0 0 0.95}
L

}xP5 0 0.0025 0 0.9975}
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How the transient probabilities are computed?

01 0 0 0
° 9 0 0 005 0 0.95
005 P=100 0 1 0
01 0 0 0
1 \/{)95 00 0 o0 1
Probability of being in 5 or 2 in the k-th state
T T
Px[o 100 1} :[1 005 0 1 1}
- AT r T
P2xfo 1 0 0 1] =[095 095 1 095 1}
- AT T
PPxfo 10 0 1] =[095 1 095 095 1}
- 1T T
PPxfo 1 0 0 1] =[1 09975 095 1 1}
- 1T T
PSxfo 1 0 0 1] =/[0.9975 09975 1 0.9975 1}
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Unbounded reachability - optional slide

Unbounded reachability
Let p(s, A) be the probability of reaching a state in A from s.
It holds that:

o p(s,A)=1forsc A

° p(s,A) = Zs’ésucc(s) P(s,s")  p(s', A) for s ¢ A
where succ(s) is a set of successors of s and P(s,s’) is the
probability on the edge from s to s’

Theorem

@ The minimal non-negative solution of the above equations
equals to the probability of unbounded reachability.
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Long Run Analysis
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Long run analysis

—()
D)

Recall that we reach the state 5(done) with probability 1.

-5

T\ Ao

What are the states visited infinitely often with probability 17
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Transient and recurrent states

Definitions

@ A state of DMTC is called transient iff there is a positive
probability that the system will not return back to this state.

@ A state s of DMTC is called recurrent iff, starting from s, the
system eventually returns back to the s with probability 1.

Theorem

@ Every transient state is visited finitely many times with
probability 1.

@ Each recurrent state is with probability 1 either not visited or
visited infinitely many times.!

This holds only in DTMC models with finitely many states.
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Transient vs. recurrent states

Which states are transient? Which states are recurrent?
SCC

0.5
Decompose the graph o Q) 2l BCC
representation onto o 0zs )
strongly connected ey
S3 Sy
components. 8 : 8 :
BSCC BSCC (c) Dave Parker

Theorem !

@ A state is recurrent if and only if it is in a bottom strongly
connected component. All other states are transient.

This holds only in DTMC models with finitely many states.
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Irreducible Markov Chain

For the sake of infinite behaviour, we will concentrate on bottom
strongly connected components only.

Definition
@ A Markov chain is said to be irreducible if every state can be
reached from every other state in a finite number of steps.

Theorem
@ A Markov chain is irreducible if and only if its graph

representation is a single strongly connected component.

Corollary

@ All states of a finite irreducible Markov chain are recurrent.
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Stationary (Invariant) Distribution

Definition
o Let P be the transition matrix of a DTMC and X be a
probability distribution on its states. If

AP =X,

then X is a stationary (or steady-state or invariant or
equilibrium) distribution of the DTMC.

Question:

How many stationary distributions can a Markov chain have?
Can it be more than one?

Can it be none?
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Stationary Distributions

Answer: It can be more that one. For example, in the Drunkard'’s

walk
1 1
00200
1/2 1/2
1/2

both (1,0,0,0) and (0,0,0,1) are stationary distributions.

But, this is not an irreducible Markov chain.
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Stationary Distributions

Theorem

@ In every finite irreducible DTMC there is a unique invariant
distribution.

Q: Can it be none?
Theorem

@ For each finite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a finite
irreducible Markov chain?
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Stationary Distribution & Cut-sets

Again, we can construct a set of equations that express the result.

Theorem

@ Let P be a transition matrix of a finite irreducible DTMC and
7 = (71,72, ...,m,) be a stationary distribution corresponding
to P. For any state j of the DTMC, we have

Zﬂij,; = Z?T,'P,"j.

JF#i JF#i
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Mean Portion of Visited States and Inter Visit Time

Theorem

@ Let us have a finite irreducible DTMC and the unique
stationary distribution 7. It holds that

i = limp_o0 E( # of visits of state i during the first n steps)/n.

@ Let us have a finite irreducible DTMC and the unique
stationary distribution 7. It holds that

mi=1/m;

where m; is the mean inter visit time of state i.
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Aperiodic Markov Chains

For example:

aperiodic periodic

Definition
@ A state s is periodic if there exists an integer A > 1 such
that length of every path from s to s is divisible by A.

@ A Markov chain is periodic if any state in the chain is
periodic.

@ A state or chain that is not periodic is aperiodic.
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Aperiodic Markov Chains

Theorem

@ Let us have a finite aperiodic irreducible DTMC and the
unique stationary distribution 7. It holds that

7= limp_y e \P"
where X is an arbitrary distribution on states.

Q: What this is good for?
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DTMC Extensions - Communication and Nondeterminism

Last remark on some DTMC extensions.

Modules and synchronisation
@ modules
@ actions

@ rewards

Decision extension
@ Markov Decision Processes (MDP)

@ Pmin and Pmax properties
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