IA169 System Verification and Assurance

Verification of Systems with Probabilities

Vojtěch Řehák

Motivation example

What are the properties of the model?

- **o** $G(\text{working} \implies F \text{ done})$ **NO o** $G(working \implies F error)$ **NO**
- FG(working ∨ error ∨ repair) **NO**

Motivation example

- What is the probability of reaching "done" from "working" with no visit of "error"?
- What is the probability of reaching "done" from "working" with at most one visit of "error"?
- What is the probability of reaching "done" from "working"?

Discrete-time Markov Chains (DTMC)

Discrete-time Markov Chains (DTMC)

- Standard model for probabilistic systems.
- State-based model with probabilities on branching.
- Based on the current state, the succeeding state is given by a discrete probability distribution.
- Markov property ("memorylessness") only the current state determines the successors (the past states are irrelevant).
- Probabilities on outgoing edges sums to 1 for each state.
- Hence, each state has at least one outgoing edge ("no deadlock").

Model of a queue

Queue for at most 4 items. In every time tick, a new item comes with probability 1*/*3 and an item is consumed with probability 2*/*3.

What if a new items comes with probability $p = 1/2$ and an item is consumed with probability $q = 2/3$?

Model of the new queue

Discrete-time Markov Chain is given by

- \bullet a set of states S ,
- an initial state s_0 of S,
- a probability matrix $P : S \times S \rightarrow [0,1]$, and
- an interpretation of atomic propositions $I: S \rightarrow AP$.

Back to our questions

Fail-Repair System

- What is the probability of reaching "done" from "working" with no visit of "error"?
- What is the probability of reaching "done" from "working" with at most one visit of "error"?
- What is the probability of reaching "done" from "working"?

Markov chain analysis

Transient analysis

- \bullet distribution after *k*-steps
- \bullet reaching/hitting probability
- **•** hitting time

Long run analysis

- **•** probability of infinite hitting
- stationary (invariant) distribution
- mean inter visit time
- **•** long run limit distribution

Property Specification

Property specification languages

Recall some non-probabilistic specification languages:

LTL formulae

$$
\varphi ::= p \mid \neg \varphi \mid \varphi \vee \varphi \mid X \varphi \mid \varphi \cup \varphi
$$

CTL formulae

$$
\varphi ::= p | \neg \varphi | \varphi \vee \varphi | EX \varphi | E[\varphi U \varphi] | EG \varphi
$$

Syntax of CTL[∗]

state formula	$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid E \psi$
path formula	$\psi ::= \varphi \mid \neg \psi \mid \psi \lor \psi \mid X \psi \mid \psi \cup \psi$

IA169 System Verification and Assurance – 12 12/31

Property specification languages

We need to quantify probability that a certain behaviour will occur.

Probabilistic Computation Tree Logic (PCTL)

Syntax of PCTL

where

- \bullet $b \in [0, 1]$ is a probability bound,
- *./*∈ {≤*, <,* ≥*, >*}, and
- $k \in \mathbb{N}$ is a bound on the number of steps.

A PCTL formula is always a state formula.

 α $U^{\leq k}$ β is a bounded until saying that α holds until β within k steps. For $k = 3$ it is equivalent to $\beta \vee (\alpha \wedge X \beta) \vee (\alpha \wedge X (\beta \vee \alpha \wedge X \beta))$.

Some tools also supports $P_{-2}\psi$ asking for the probability that the specified behaviour will occur.

IA169 System Verification and Assurance – 12 13/31

PCTL examples

We can also use derived operators like G, F, \wedge , \Rightarrow , etc.

Probabilistic reachability $P_{\geq 1}$ (*F done*)

• probability of reaching the state done is equal to 1

Probabilistic bounded reachability P*>*0*.*99(F [≤]⁶ done)

- probability of reaching the state done in at most 6 steps is *>* 0*.*99 **Probabilistic until** $P_{< 0.96}$ (\lnot error) U (done))
	- probability of reaching done with no visit of error is less than 0*.*96

Qualitative vs. quantitative properties

Qualitative PCTL properties

• $P_{\scriptscriptstyle \text{N1b}} \psi$ where *b* is either 0 or 1

Quantitative PCTL properties

• $P_{\bowtie b} \psi$ where b is in $(0, 1)$

In DTMC where zero probability edges are erased, it holds that

- $P_{>0}(X \varphi)$ is equivalent to $EX \varphi$
	- **•** there is a next state satisfying φ
- $P_{\geq 1}(X\varphi)$ is equivalent to $AX\varphi$
	- the next states satisfy *ϕ*
- $P_{>0}(F \varphi)$ is equivalent to $EF \varphi$
	- there exists a finite path to a state satisfying φ

but

• $P_{>1}(F \varphi)$ is **not** equivalent to AF φ

There is no CTL formula equivalent to $P_{\geq 1}(F \varphi)$, and no PCTL formula equivalent to AF *ϕ*.

IA169 System Verification and Assurance – 12 15/31

How the transient probabilities are computed?

Probability in the k -th state when starting in 1

$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \times P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \times P^2 = \begin{bmatrix} 0 & 0 & 0.05 & 0 & 0.95 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \times P^3 = \begin{bmatrix} 0 & 0 & 0 & 0.05 & 0.95 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \times P^4 = \begin{bmatrix} 0 & 0.05 & 0 & 0 & 0.95 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \times P^5 = \begin{bmatrix} 0 & 0 & 0.0025 & 0 & 0.9975 \end{bmatrix}
$$

How the transient probabilities are computed?

Probability of being in 5 or 2 in the k -th state

$$
P \times \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0.95 & 0 & 1 & 1 \end{bmatrix}^T
$$

\n
$$
P^2 \times \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 0.95 & 0.95 & 1 & 0.95 & 1 \end{bmatrix}^T
$$

\n
$$
P^3 \times \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 0.95 & 1 & 0.95 & 0.95 & 1 \end{bmatrix}^T
$$

\n
$$
P^4 \times \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0.9975 & 0.95 & 1 & 1 \end{bmatrix}^T
$$

\n
$$
P^5 \times \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 0.9975 & 0.9975 & 1 & 0.9975 & 1 \end{bmatrix}^T
$$

Unbounded reachability

Let $p(s, A)$ be the probability of reaching a state in A from s.

It holds that:

•
$$
p(s, A) = 1
$$
 for $s \in A$

•
$$
p(s, A) = \sum_{s' \in succ(s)} P(s, s') * p(s', A)
$$
 for $s \notin A$

where $succ(s)$ is a set of successors of s and $P(s, s')$ is the probability on the edge from s to s' .

Theorem

• The minimal non-negative solution of the above equations equals to the probability of unbounded reachability.

Long Run Analysis

Long run analysis

Recall that we reach the state $5(done)$ with probability 1.

What are the states visited infinitely often with probability 1?

IA169 System Verification and Assurance – 12 20/31

Definitions

- A state of DMTC is called **transient** iff there is a positive probability that the system will not return back to this state.
- A state s of DMTC is called **recurrent** iff, starting from s, the system eventually returns back to the s with probability 1.

Theorem

- Every transient state is visited finitely many times with probability 1.
- Each recurrent state is with probability 1 either **not visited** or **visited infinitely many times**. 1

IA169 System Verification and Assurance – 12 21/31

¹This holds only in DTMC models with finitely many states.

Which states are transient? Which states are recurrent?

Decompose the graph representation onto strongly connected components.

Theorem $¹$ </sup>

A state is **recurrent** if and only if it is in a **bottom strongly connected component**. All other states are **transient**.

IA169 System Verification and Assurance – 12 22/31

¹This holds only in DTMC models with finitely many states.

For the sake of infinite behaviour, we will concentrate on bottom strongly connected components only.

Definition

A Markov chain is said to be **irreducible** if every state can be reached from every other state in a finite number of steps.

Theorem

A Markov chain is **irreducible** if and only if its graph representation is a single strongly connected component.

Corollary

All states of a finite irreducible Markov chain are recurrent.

Stationary (Invariant) Distribution

Definition

• Let P be the transition matrix of a DTMC and $\vec{\lambda}$ be a probability distribution on its states. If

$$
\vec{\lambda}P=\vec{\lambda},
$$

then *~λ* is a **stationary** (or **steady-state** or **invariant** or **equilibrium**) **distribution** of the DTMC.

Question:

How many stationary distributions can a Markov chain have? Can it be more than one? Can it be none?

Answer: It can be more that one. For example, in the Drunkard's walk

both (1*,* 0*,* 0*,* 0) and (0*,* 0*,* 0*,* 1) are stationary distributions.

But, this is not an irreducible Markov chain.

Theorem

• In every finite irreducible DTMC there is a unique invariant distribution.

Q: Can it be none? **Theorem**

For each finite DTMC, there is an invariant distribution.

Q: How can we compute the invariant distribution of a finite irreducible Markov chain?

Again, we can construct a set of equations that express the result.

Theorem

 \bullet Let P be a transition matrix of a finite irreducible DTMC and $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_n)$ be a stationary distribution corresponding to P . For any state i of the DTMC, we have

$$
\sum_{j\neq i}\pi_j P_{j,i}=\sum_{j\neq i}\pi_i P_{i,j}.
$$

Theorem

Let us have a finite irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that

 $\pi_i = \lim_{n \to \infty} E($ # of visits of state *i* during the first *n* steps)/*n*.

Let us have a finite irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that

$$
\pi_i=1/m_i
$$

where m_i is the mean inter visit time of state *i*.

Aperiodic Markov Chains

For example:

Definition

- A state s is **periodic** if there exists an integer ∆ *>* 1 such that length of every path from s to s is divisible by Δ .
- A Markov chain is **periodic** if any state in the chain is periodic.
- A state or chain that is not periodic is **aperiodic**.

IA169 System Verification and Assurance – 12 29/31

Theorem

Let us have a finite aperiodic irreducible DTMC and the unique stationary distribution $\vec{\pi}$. It holds that

$$
\vec{\pi} = \lim_{n \to \infty} \vec{\lambda} P^n
$$

where $\vec{\lambda}$ is an arbitrary distribution on states.

Q: What this is good for?

Last remark on some DTMC extensions.

Modules and synchronisation

- **o** modules
- **a** actions
- **o** rewards

Decision extension

- Markov Decision Processes (MDP)
- **Pmin** and **Pmax** properties