Essential Information Theory

PA154 Jazykové modelování (1.3)

Pavel Rychlý

pary@fi.muni.cz

23 February, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

The Notion of Entropy

- Entropy "chaos", fuzziness, opposite of order,...
 - ▶ you know it
 - ▶ it is much easier to create "mess" than to tidy things up...
- Comes from physics:
 - ► Entropy does not go down unless energy is used
- Measure of uncertainty:
 - ▶ if low . . . low uncertainty

Entropy

The higher the entropy, the higher uncertainty, but the higher "surprise" (information) we can get out of experiment.

The Formula

- Let $p_X(x)$ be a distribution of random variable X
- Basic outcomes (alphabet) Ω

Entropy

$$H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$$

- Unit: bits (log₁₀: nats)
- Notation: $H(X) = H_p(X) = H(p) = H_X(p) = H(p_X)$

Using the Formula: Example

- Toss a fair coin: $\Omega = \{head, tail\}$
 - p(head) = .5, p(tail) = .5
 - ► $H(p) = -0.5 \log_2(0.5) + (-0.5 \log_2(0.5)) = 2 \times ((-0.5) \times (-1)) = 2 \times 0.5 = 1$
- Take fair, 32-sided die: $p(x) = \frac{1}{32}$ for every side x
 - ► $H(p) = -\sum_{i=1...32} p(x_i) \log_2 p(x_i) = -32(p(x_1) \log_2 p(x_1))$ (since for all $i \ p(x_i) = p(x_1) = \frac{1}{32}$ = $-32 \times (\frac{1}{32} \times (-5)) = 5$ (now you see why it's called bits?)
- Unfair coin:
 - ▶ p(head) = .2 ... H(p) = .722
 - ▶ p(head) = .1 ... H(p) = .081

Example: Book Availability

The Limits

- When H(p) = 0?
 - ▶ if a result of an experiment is **known** ahead of time:
 - necessarily:

$$\exists x \in \Omega; p(x) = 1\& \forall y \in \Omega; y \neq x \Rightarrow p(y) = 0$$

- Upper bound?
 - none in general
 - ▶ for $|\Omega| = n : H(p) \le \log_2 n$
 - ▶ nothing can be more uncertain than the uniform distribution

Entropy and Expectation

■ Recall:

•
$$E(X) = \sum_{x \in X(\Omega)} p_x(x) \times x$$

■ Then:

$$E\left(\log_2\left(\frac{1}{p(x)}\right)\right) = \sum_{x \in X(\Omega)} p_x(x) \log_2\left(\frac{1}{p_x(x)}\right) = -\sum_{x \in X(\Omega)} p_X(x) \log_2 p_x(x) = H(p_x) =_{notation} H(p)$$

Perplexity: motivation

- Recall:
 - ▶ 2 equiprobable outcomes: H(p) = 1 bit
 - ▶ 32 equiprobable outcomes: H(p) = 5 bits
 - ▶ 4.3 billion equiprobable outcomes: $H(p) \cong 32$ bits
- What if the outcomes are not equiprobable?
 - ▶ 32 outcomes, 2 equiprobable at 0.5, rest impossible:
 - ► H(p) = 1 bit
 - any measure for comparing the entropy (i.e. uncertainty/difficulty of prediction) (also) for random variables with different number of outcomes?

Perplexity

- Perplexity:
 - $G(p) = 2^{H(p)}$
- ...so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.
- it is easier to imagine:
 - NLP example: vocabulary size of a vocabulary with uniform distribution, which is equally hard to predict
- the "wilder" (biased) distribution, the better:
 - lower entropy, lower perplexity

Joint Entropy and Conditional Entropy

- Two random variables: X (space Ω), Y (Ψ)
- Joint entropy:
 - ▶ no big deal: ((X,Y) considered a single event):

$$H(X,Y) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(x,y)$$

Conditional entropy:

$$H(Y|X) = -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x, y) \log_2 p(y|x)$$

recall that
$$H(X)=E\left(\log_2\frac{1}{p_X(x)}\right)$$
 (weighted "average", and weights are not conditional)

Conditional Entropy (Using the Calculus)

other definition:

$$H(Y|X) = \sum_{x \in \Omega} p(x)H(Y|X = x) =$$
 for $H(Y|X = x)$, we can use the single-variable definition $(x \sim \text{constant})$
$$= \sum_{x \in \Omega} p(x) \left(-\sum_{y \in \Psi} p(y|x) \log_2 p(y|x) \right) =$$

$$= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(y|x)p(x) \log_2 p(y|x) =$$

$$= -\sum_{x \in \Omega} \sum_{y \in \Psi} p(x,y) \log_2 p(y|x)$$

Properties of Entropy I

- Entropy is non-negative:
 - ► $H(X) \ge 0$
 - ▶ proof: (recall: $H(X) = -\sum_{x \in \Omega} p(x) \log_2 p(x)$)
 - ▶ $log_2(p(x))$ is negative or zero for $x \le 1$,
 - ▶ p(x) is non-negative; their product $p(x) \log(p(x))$ is thus negative,
 - sum of negative numbers is negative,
 - ▶ and -f is positive for negative f
- Chain rule:
 - \vdash H(X, Y) = H(Y|X) + H(X), as well as
 - ► H(X, Y) = H(X|Y) + H(Y) (since H(Y, X) = H(X, Y))

Properties of Entropy II

- Conditional Entropy is better (than unconditional):
 - \vdash $H(Y|X) \leq H(Y)$
- $H(X,Y) \le H(X) + H(Y)$ (follows from the previous (in)equalities)
 - ► equality iff X,Y independent
 - (recall: X,Y independent iff p(X,Y)=p(X)p(Y))
- H(p) is concave (remember the book availability graph?)
 - concave function f over an interval (a,b): $\forall x, y \in (a, b), \forall \lambda \in [0, 1] : f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$
 - ▶ function *f* is convex if -*f* is concave
- for proofs and generalizations, see Cover/Thomas

