Essential Information Theory

PA154 Jazykové modelování (1.3)

Pavel Rychlý

pary@fi.muni.cz
23 February, 2017

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/~hajic

The Notion of Entropy

■ Entropy - "chaos" , fuzziness, opposite of order,...

- you know it
- it is much easier to create "mess" than to tidy things up...
- Comes from physics:
- Entropy does not go down unless energy is used
- Measure of uncertainty:
- if low ... low uncertainty

Entropy

The higher the entropy, the higher uncertainty, but the higher "surprise" (information) we can get out of experiment.

The Formula

- Let $p_{x}(x)$ be a distribution of random variable X
- Basic outcomes (alphabet) Ω

Entropy

$$
H(X)=-\sum_{x \in \Omega} p(x) \log _{2} p(x)
$$

■ Unit: bits $\left(\log _{10}\right.$: nats)
■ Notation: $H(X)=H_{p}(X)=H(p)=H_{X}(p)=H\left(p_{X}\right)$

Using the Formula: Example

- Toss a fair coin: $\Omega=\{$ head, tail $\}$
- $\mathrm{p}($ head $)=.5, \mathrm{p}($ tail $)=.5$
- $H(p)=-0.5 \log _{2}(0.5)+\left(-0.5 \log _{2}(0.5)\right)=$ $2 \times((-0.5) \times(-1))=2 \times 0.5=1$
- Take fair, 32-sided die: $p(x)=\frac{1}{32}$ for every side x
- $H(p)=-\sum_{i=1 \ldots .32} p\left(x_{i}\right) \log _{2} p\left(x_{i}\right)=-32\left(p\left(x_{1}\right) \log _{2} p\left(x_{1}\right)\right)$ (since for all i $p\left(x_{i}\right)=p\left(x_{1}\right)=\frac{1}{32}$ $=-32 \times\left(\frac{1}{32} \times(-5)\right)=5$ (now you see why it's called bits?)
- Unfair coin:
- $\mathrm{p}($ head $)=.2 \ldots \mathbf{H}(\mathbf{p})=.722$
- $\mathrm{p}($ head $)=.1 \ldots \mathbf{H}(\mathbf{p})=.081$

Example: Book Availability

The Limits

- When $H(p)=0$?
- if a result of an experiment is known ahead of time:
- necessarily:

$$
\exists x \in \Omega ; p(x)=1 \& \forall y \in \Omega ; y \neq x \Rightarrow p(y)=0
$$

■ Upper bound?

- none in general
- for $|\Omega|=n: H(p) \leq \log _{2} n$
- nothing can be more uncertain than the uniform distribution

Entropy and Expectation

- Recall:
- $E(X)=\sum_{x \in X(\Omega)} p_{x}(x) \times x$
- Then:
$E\left(\log _{2}\left(\frac{1}{p(x)}\right)\right)=\sum_{x \in X(\Omega)} p_{x}(x) \log _{2}\left(\frac{1}{p_{x}(x)}\right)=$
$-\sum_{x \in X(\Omega)} p_{x}(x) \log _{2} p_{x}(x)=H\left(p_{x}\right)={ }_{\text {notation }} H(p)$

Perplexity: motivation

- Recall:
- 2 equiprobable outcomes: $\mathrm{H}(\mathrm{p})=1$ bit
- 32 equiprobable outcomes: $\mathrm{H}(\mathrm{p})=5$ bits
- 4.3 billion equiprobable outcomes: $\mathrm{H}(\mathrm{p}) \cong 32$ bits

■ What if the outcomes are not equiprobable?

- 32 outcomes, 2 equiprobable at 0.5 , rest impossible:
- $\mathrm{H}(\mathrm{p})=1$ bit
- any measure for comparing the entropy (i.e. uncertainty/difficulty of prediction) (also) for random variables with different number of outcomes?

Perplexity

- Perplexity:
- $G(p)=2^{H(p)}$

■...so we are back at 32 (for 32 eqp. outcomes), 2 for fair coins, etc.

- it is easier to imagine:
- NLP example: vocabulary size of a vocabulary with uniform distribution, which is equally hard to predict
■ the "wilder" (biased) distribution, the better:
- lower entropy, lower perplexity

Joint Entropy and Conditional Entropy

- Two random variables: X (space Ω), $\mathrm{Y}(\Psi)$

■ Joint entropy:

- no big deal: ((X, Y) considered a single event):

$$
H(X, Y)=-\sum_{x \in \Omega} \sum_{y \in \Psi} p(x, y) \log _{2} p(x, y)
$$

■ Conditional entropy:

$$
H(Y \mid X)=-\sum_{x \in \Omega} \sum_{y \in \Psi} p(x, y) \log _{2} p(y \mid x)
$$

recall that $H(X)=E\left(\log _{2} \frac{1}{p_{\chi}(x)}\right)$
(weighted "average", and weights are not conditional)

Conditional Entropy (Using the Calculus)

- other definition:

$$
\begin{aligned}
& H(Y \mid X)=\sum_{x \in \Omega} p(x) H(Y \mid X=x)= \\
& \quad \text { for } H(Y \mid X=x), \text { we can use }
\end{aligned}
$$

$$
\text { the single-variable definition (} x \sim \text { constant })
$$

$$
\begin{gathered}
=\sum_{x \in \Omega} p(x)\left(-\sum_{y \in \Psi} p(y \mid x) \log _{2} p(y \mid x)\right)= \\
=-\sum_{x \in \Omega} \sum_{y \in \Psi} p(y \mid x) p(x) \log _{2} p(y \mid x)= \\
=-\sum_{x \in \Omega} \sum_{y \in \Psi} p(x, y) \log _{2} p(y \mid x)
\end{gathered}
$$

Properties of Entropy I

- Entropy is non-negative:
- $H(X) \geq 0$
- proof: (recall: $\left.H(X)=-\sum_{x \in \Omega} p(x) \log _{2} p(x)\right)$
- $\log _{2}(p(x))$ is negative or zero for $x \leq 1$,
- $p(x)$ is non-negative; their product $p(x) \log (p(x))$ is thus negative,
- sum of negative numbers is negative,
- and - f is positive for negative f
- Chain rule:
- $H(X, Y)=H(Y \mid X)+H(X)$, as well as
- $H(X, Y)=H(X \mid Y)+H(Y)$ (since $H(Y, X)=H(X, Y)$)

Properties of Entropy II

- Conditional Entropy is better (than unconditional):
- $H(Y \mid X) \leq H(Y)$

■ $H(X, Y) \leq H(X)+H(Y)$ (follows from the previous (in)equalities)

- equality iff X, Y independent
- (recall: X, Y independent iff $p(X, Y)=p(X) p(Y)$)

■ $H(p)$ is concave (remember the book availability graph?)

- concave function f over an interval (a, b) :

$$
\begin{aligned}
& \forall x, y \in(a, b), \forall \lambda \in[0,1]: \\
& f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

- function f is convex if $-f$ is concave

■ for proofs and generalizations, see Cover/Thomas

