
PA160: Net-Centric Computing II.

Specification and Verification of Network Protocols

Vojtěch Řehák

Faculty of Informatics, Masaryk University

Spring 2017

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 1 / 97



Theory Definition and Usage

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 2 / 97



Theoretical Results as Tools for Users

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 3 / 97



Formal Models - what are they good for

The basic concept is a model of system (i.e. the object we work with).

thought handling

individual approach (intra-brain) - to grasp it

documentation (inter-brain) - to pass it on

automatic/computer processing (comparing model to specification)

testing

simulation

symbolic execution

static analysis

model checking

equivalence checking

theorem proving

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 4 / 97



Formal Models in Specification

natural language vs. formal language

freedom in writing restrictions in writing
human resources automatic methods

nothing ≤ text ≤ structured text ≤ text with formal “pictures” ≤
formal description with informal comments ≤ complete formal description

Goal: Find an appropriate level of abstraction and keep it.

“What will be the model used for?”

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 5 / 97



Map - Abstraction Example

Find Pardubice or directions from Brno to Liberec. source: www.mapy.cz

Find Pardubice or directions from Brno to Liberec. source: www.mapy.cz

“Model has to suit its purpose!”

Only relevant information are presented; no more, no less.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 6 / 97



Outline

Models we will talk about:

Message Sequence Charts (MSC)

Specification and Description Language (SDL)

Petri nets

Queueing theory

What they can be used for?

modelling

specification

analysis

simulation

testing

partial implementation

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 7 / 97



Distributed Systems

“What is the problem of distributed systems?”

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 8 / 97



Distributed Systems – Key characteristics (Déjà vu)

Key Characteristics of Distributed Systems:
Autonomicity – there are several autonomous computational entities, each
of which has its own local memory
Heterogeneity – the entities may differ in many ways

computer HW (different data types’ representation), network
interconnection, operating systems (different APIs), programming languages
(different data structures), implementations by different developers, etc.

Concurrency – concurrent (distributed) program execution and resource
access
No global clock – programs (distributed components) coordinate their
actions by exchanging messages

message communication can be affected by delays, can suffer from variety of
failures, and is vulnerable to security attacks

Independent failures – each component of the system can fail
independently, leaving the others still running (and possibly not informed
about the failure)

How to know/differ the states when a network has failed or became
unusually slow?
How to know if a remote server crashed immediately?

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 9 / 97



Distributed Systems

World is distributed Human way of thinking is sequential

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 10 / 97



Distributed vs. Local

SDL MSC
Specification Description Message Sequence

Language Chart

ITU-T Z.100 ITU-T Z.120

models of components communication model

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 11 / 97



Message Sequence Chart (MSC)

Message Sequence Chart (MSC)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 12 / 97



Message Sequence Chart (MSC)

international standard of ITU-T, Z.120

1993 - first version of Z.120 recommendation

. . .

2011 - current version of Z.120 recommendation

all documents of the current version:

Z.120 - Message Sequence Chart (MSC)
Z.120 Annex B - Formal semantics of message sequence charts
Z.121 - Specification and Description Language (SDL) data binding to
Message Sequence Charts (MSC)

It formally defines both textual and graphical form.

MSC is a similar concept to UML Sequence Charts.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 13 / 97



Message Sequence Chart (MSC)

A trace language for the specification and description of the
communication behaviour by means of message exchange.

Describes

communicating processes,

communication traces,

message order,

time information (timeouts, constraints),

high-level form for set of traces.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 14 / 97



Message Sequence Chart (MSC)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 15 / 97



Message Sequence Chart (MSC) - semantics

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 16 / 97



MSC - Visual Order

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 17 / 97



MSC - Visual Order - Hasse Diagram

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 18 / 97



MSC Properties

What is an unwanted behaviour/property?

Fundamental problems in the specified model, e.g. an implementation of
the model does not exist in the given environment.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 19 / 97



Acyclic/Cyclic property

cyclic dependency among events

unrealizable in any environment

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 20 / 97



Acyclic/Cyclic property

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 21 / 97



FIFO/non-FIFO property

overleaping messages

unrealizable in an environment preserving message order

realizable in an environment with P2P channels but unrealizable in case of
one global channel

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 22 / 97



Race Condition

Informally, race is when some receive event can come earlier.
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 23 / 97



Solution #1 - Coregion Construction

Let us demonstrate that some events are not ordered.

Events in a coregion are not order;
except for the event related by general ordering.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 24 / 97



Solution #2 - List/set of all possibilities

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 25 / 97



High-Level MSC (HMSC)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 26 / 97



High-Level MSC (HMSC) - ITU-T Z.120

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 27 / 97



High-Level MSC (HMSC) - ITU-T Z.120

these events are not ordered!

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 28 / 97



Deadlock Property

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 29 / 97



Livelock Property

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 30 / 97



Membership

Is a given MSC included in a given HMSC?

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 31 / 97



Inline Expressions

Other inline expression types: opt, loop〈m, n〉, exc, seq, par.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 32 / 97



Non-local Choice

System3 does not know which alternative has been chosen.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 33 / 97



Universal Boundedness

What is the size of input buffer of Y that will never overflow?

Every finite input buffer of Y can overflow.

Buffers of size 1 will never overflow.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 34 / 97



Existential Boundedness

The system deadlocks in case of FIFO channels (and FIFO buffers).
What is the size of non-FIFO buffer needed to avoid deadlock (in case of
FIFO channels)?

Buffer of size 2 suffices to avoid deadlock.
Or one buffer for each message label (type).

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 35 / 97



Race Condition - Solution #3 - Time Constraints

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 36 / 97



Time Consistency

Are the given time conditions consistent?

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 37 / 97



Time Tightening

Some time conditions can be tightened.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 38 / 97



Timers

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 39 / 97



MSC - Summary

Basic MSC

instances

messages

send events

receive events

conditions

coregions

general ordering

inline expressions

time constraints

timers

High-level MSC (HMSC)

start node

end node

reference nodes

connection points

lines

conditions

time constraints

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 40 / 97



MSC - Properties

Acyclic property

FIFO property

Race Condition

Deadlock

Livelock

Membership

Nonlocal Choice

Universal Boundedness

Existential Boundedness

Time Race Condition

Time Consistency

Tighten Time

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 41 / 97



MSC - Goals

What MSC is good for?
Both human and computer readable formalizm for:

basic behaviour demonstration (use cases),

high level system behaviour description,

test case specification, and

(test) log visualization.

What MSC is NOT good for?
detailed specification (before implementation), hierarchical structure of
communicating entities, implementation details (primitives for
communication, detailed data manipulation), etc.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 42 / 97



MSC - Tools

Mesa

academic tool

local choice and time checkers

MSCan

academic tool

only textual input

some checkers

IBM Rational, SanDriLa SDL, Cinderella SDL

Sequence Chart Studio (SCStudio)

MS Visio addon

drawing, import, export

checkers for all the mentioned properties

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 43 / 97



Sequence Chart Studio

MSC drawing and verification tool developed at FI MU.

http://scstudio.sourceforge.net

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 44 / 97



Distributed vs. Local

SDL MSC
Specification Description Message Sequence

Language Chart

ITU-T Z.100 ITU-T Z.120

models of components communication model

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 45 / 97



Specification Description Language (SDL)

Specification Description Language (SDL)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 46 / 97



Specification Description Language (SDL)

international standard of ITU-T, Z.100

1972 - Establishment of a working group for SDL
1976 - first version of Z.100 recommendation
. . .
12/2011 - current version of Z.100 recommendation
all documents of the current version:

Z.100 - Specification and Description Language (SDL)
Z.100 Supplement 1 - SDL+ methodology: Use of MSC and SDL
Z.Imp100 - SDL implementer’s guide
Z.101 - SDL - Basic SDL-2010
Z.102 - SDL - Comprehensive SDL-2010
Z.103 - SDL - Shorthand notation and annotation in SDL-2010
Z.104 - SDL - Data and action language in SDL-2010
Z.105 - SDL - SDL-2010 combined with ASN.1 modules
Z.106 - SDL - Common interchange format for SDL
Z.108 - SDL - Object-oriented data in SDL-2010
Z.109 - SDL - UML profile for SDL-2010

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 47 / 97



SDL - Specification Description Language

An object oriented languages for specification of applications that are

heterogeneous,

distributed (concurrent),

interactive (event-driven, discrete signals), and

real-time dependent (with delays, timeouts).

Describes

structure (distributed components of the system),

behaviour (instructions within the components), and

data

of distributed systems in real-time environments.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 48 / 97



SDL - representations

Three representations:

SDL/GR graphical representation (human readable)

SDL/PR textual phrase representation (machine readable)

SDL/CIF common interchange format (SDL/PR with graphical
information)

In what follows, we focus on the graphical representation (SDL-GR).
Basic SDL components

system and blocks (structure)

processes and procedures (behaviour)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 49 / 97



SDL/GR - Process

source: TIMe Electronic Textbook v4.0
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 50 / 97



SDL/GR - Procedure

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 51 / 97



SDL/GR - Block

source: TIMe Electronic Textbook v4.0
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 52 / 97



SDL/GR - Block with block structure

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 53 / 97



SDL/GR - System (the top most block)

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 54 / 97



SDL/GR - Channels

Nondelaying channels for “immediate” message delivery
(e.g., between processes within a computer).

Delaying channels for “time consuming” message delivery
(e.g., between dislocated blocks).

Channels can also be one-directional.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 55 / 97



Summary of SDL Basics

System - is the top most block surrounded by environment.

Block - consists of blocks or processes that are connected by
channels.

- expresses the hierarchical structure of the system.

- its names are references to other objects.

Process - sends and receives messages.

- stays in states.

- can call procedures.

Procedure - is a subroutine that can finish.

- does not return any value (only in variables or sent
messages).

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 56 / 97



Message Exchange - Operational Semantics

one input buffer for a process

FIFO behaviour

no priority queues

signal which is unspecified in the current state is discarded

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 57 / 97



Asterisk Save, Asterisk State, and Dash State

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 58 / 97



Timer Construction

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 59 / 97



Multiple Instances of a Block

source: TIMe Electronic Textbook v4.0

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 60 / 97



Multiple Instances of a Process

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 61 / 97



Additional SDL Constructs

Asterisk save, asterisk state, and dash state

Timer construction

Multiple block instances (no dynamic creation)

Multiple process instances (with dynamic creation and limit)

Packages collections of related types and definitions (library)

Subtypes

Virtual processes

Process type redefinition and finalization

Inherited blocks

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 62 / 97



SDL - Overview

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 63 / 97



SDL - Goals

What SDL is good for?
SDL is designed for unambiguous specification of requirements and
description of implementation of the normative requirements of
telecommunication protocol standards.

For computer based tools to improve the process of

specification (create, maintain, and analyze), and

implementation (automatic code generation).

What SDL is NOT good for?
high level system description (what the system serves for), demonstration
of good or wrong behaviour, test trace specification, implementation
details (primitives for communication, detailed data manipulation), etc.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 64 / 97



MSC and SDL in Workflow

typical/optimal communication sequences (MSC)

error sequences (MSC)

optionally - full specification in (HMSC)

distributed specification (SDL)

Formal model benefits

(H)MSC to SDL transformation (realization)

SDL to source code transformation (implementation)

MSC to test case transformation

simulation to MSC transformation (membership checking)

. . .

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 65 / 97



SDL - Tools

IBM Rational

from tools of Telelogic (SDT, Geode, Tau)

drawing, import, export

automatic implementation in C++

simulation support

SanDriLa SDL

MS Visio stencil

drawing, import, export

analyses of states in process diagrams

open for addons

Cinderella SDL

modelling, import, export

analyses and simulation

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 66 / 97



Petri Nets

Petri Nets

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 67 / 97



Petri Nets

C. A. Petri: Kommunikation mit automaten, 1962

Basic components:

places

transitions

tokens

arcs

Marking = configuration
= distribution of tokens
= vector of #s of tokens in
places

places with tokens inside

transition

input places

output places

transition

A transition can be fired if there is a token in each of its input places.

Tokens from input places are removed and new tokens are added into the
output places of the fired transition.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 68 / 97



Demonstration Example #1

What is wrong in this example?

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 69 / 97



Demonstration Example #2

Better and a bit more complicated example.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 70 / 97



Basic Constructions

Sequential
execution

a

b

Iteration

a

Alternative

a b

Parallel execution

a b

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 71 / 97



Basic Constructions

Semaphore

a b

Rende-vous

a

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 72 / 97



Basic Constructions

a b

Critical section

a b

Alternation

a b

Deadlock

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 73 / 97



Different Modifications/Extensions of Petri Nets

Condition-Event Petri nets (C-E PN)

Place-Transition Petri nets (P-T PN)

Coloured Petri nets

Hierarchical Petri nets

Timed Petri nets

Time Petri nets

Stochastic Petri nets

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 74 / 97



Condition-Event Petri Nets

In this case:

places = conditions

transitions = event

An event/transition is enabled if and only if

all its pre-conditions are true and

all its post-conditions are false.

I.e., an event occurrence negates its pre- and post-conditions.

Therefore, there is one or none token in each place.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 75 / 97



Transition-Place Petri Nets

An arbitrary number of tokens in each place.

transp. channel

notification channel

producer consumer

Producer-consumer model for bounded transport channel.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 76 / 97



Additional Constructs - Arc Multiplicity

3 2

2

3 2

2

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 77 / 97



Additional Constructs - Inhibitor and Reset Arcs

An inhibitor arc imposes the
precondition that the transition
may only fire when the place is
empty.

A reset arc does not impose a
precondition on firing, and
empties the place when the
transition fires.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 78 / 97



Properties of Petri nets

reachability - reachability tree or coverability tree

bounded (safe) places
a place with a bound on the number of its tokens in all reachable
markings
a place is safe if the number of its tokens ≤ 1 in all reachable markings

liveness
a transition is live if, from every marking, one can reach a marking
where the transition is enabled
a net is live if all its transitions are live

p1 p2

p3

t1
t2

t3

p1 p2

p3

p1’ p2’

t1
t2

t3

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 79 / 97



Properties of Petri nets

p-invariant
an invariant vector on places, i.e. a multiset of places representing
weighting such that any such weighted marking remains invariant by
any firing, e.g. 3 ∗ p1 + p2 + p3 + p4 + p5 + 3 ∗ p6.

t-invariant
an invariant vector on transitions, i.e. a multiset of transitions whose
firing leave invariant any marking, e.g. t1 + 2 ∗ t2 + t3 + t4 + t5.

p1

p2 p3

p4 p5

p6t1

t2

t3

t4 t5

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 80 / 97



Coloured Petri Nets

Different colours (classes) of tokens.

p q r 3‘p+2‘q+5‘r

3‘p+1‘q+2‘r

2‘q

marking expression, arc expression, transition guard (next slide)

Colours usually serves for data type representation.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 81 / 97



Coloured Petri Net Example

source: http://scienceblogs.com/goodmath/2007/10/colored petri nets.php
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 82 / 97



Hierarchical Petri Nets

source: http://www.gridworkflow.org/kwfgrid/gwes-web/
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 83 / 97



Time PN, Timed PN, Stochastic PN, . . .

priority nets

priorities of concurrent transitions

time (or timed-arc) nets

tokens has its lifetime, arcs to transitions are labeled by time intervals
of required ages of tokens

timed nets

firing starts when a transition is enabled but it takes some specified
time to produce output

stochastic nets

probability distribution on time to fire (exponential, deterministic, or
general distributions)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 84 / 97



PN Tools

CPN Tools

Coloured Petri Nets (with prioritized transitions and real time support)

editor, simulation, analyses

Tapall

Timed-Arc Petri Nets (with real time support)

editor, simulation, compositional models, TCTL logic checker

TimeNET

Coloured and Stochastic PN with non-exponential distributions

editor, simulation, analyses (p-invariant, performance analyses)

SNOOPY, TINA - TIme petri Net Analyzer, Roméo, . . .

And many more tools and use cases, see, e.g.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
http://cs.au.dk/cpnets/industrial-use/

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 85 / 97



Queueing theory

Queueing theory

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 86 / 97



Queueing Theory

In 1909 A.K. Erlang, a danish telephone engineer, was asked:

“What the queue capacity should be
of the central telephone switch in Copenhagen?”

Our motivation example:

Example

30 customers will visit the cash machine in an hour.
Each will use it for 1.5 minute on average.

How busy is the cash machine?
For how long time does a customer wait (on average)?

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 87 / 97



Queues and Thier Parameters

inter-arrival time distribution (type of the distribution, rate λ, or
mean inter-arrival time 1/λ, other moments . . . )

service time distribution (type of the distribution, rate µ, or mean
service time 1/µ, other moments . . . )

number of servers

maximal queue length

. . .
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 88 / 97



Queue Parameters - Kendall Notation

A/S/n/B/K/SD

A - inter-arrival time distribution

G - general, M - Poisson, D - deterministic. . .

S - service time distribution

G - general, M - exponential, D - deterministic. . .

n - number of servers

1, 2, . . . , ∞
B - buffer size (the max. number of waiting and served requests)

1, 2, . . . , ∞
K - population size

1, 2, . . . , ∞
SD - service discipline

FIFO, LIFO, Random, RR - Round Robin

E.g., M/G/1/∞
Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 89 / 97



Queueing Networks

open and closed networks

system dependences

traffic intensity

occupancy (on different servers), bottleneck detection, . . .

very similar to Stochastic Petri Nets

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 90 / 97



Questions about Queues

What is the utilization factor ρ, probability of being not empty?

What is the mean number N of waiting (or being served) requests?

What is the mean waiting and service time, i.e. the time T the
requests spends in the system?

And so, how many servers do I need to . . .

General solution:

simulation

For specific types of queues:

analytical results

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 91 / 97



Analytical Solutions for M/M/1 Queues

For M/M/1/∞ queue with arival rate λ and service time rate µ:

The mean inter-arrival time is 1/λ.

The mean service time is 1/µ.

The utilization factor ρ = λ/µ.

The queue is stable if ρ < 1, i.e. λ < µ.

The (stable) queue is empty with probability P0 = 1− ρ.

The mean number of requests (waiting or being served) in a stable
system N = ρ/(1− ρ). It is also usually denoted by L as it is the
length of the queue.

The average time spend in a stable system
T = 1/(µ− λ) = 1/(µ(1− ρ)).

The rate of the trafic carried out by the queue is µρ = µ(1− P0).

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 92 / 97



Our Motivation Example Solved as M/M/1/∞

Example

30 customers will visit our cash machine in an hour.
Each will use it for 1.5 minute on average.
How busy is the cash machine? What is the average waiting time?

The mean inter-arrival time is 2 minutes.

The rate of the inter-arrival time λ is 1/2 = 0.5.

The mean service time is 1.5 minute.

The rate of the service time µ is 2/3 ≈ 0.666667.

The queue is stable and the utilization factor ρ = 3/4 = 0.75.

The mean number of requests (waiting or being served) N is 3.

The average time spend in the system T is 6 minutes.

I.e., the utilization of the cash machine is 45 minutes in an hour, i.e. 75%.
Average number of customers at the cash machine is 3.
The average waiting of a customer is 4.5 minutes + 1.5 min for service.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 93 / 97



Little’s Law

Theorem

Let L be the long-term average number of customers in a stable
system, λ be the long-term average effective arrival rate, and W be the
average time a customer spends in the system. Then it holds that

L = λ ·W

for a queue of any type.

Although it looks intuitively reasonable, it is quite a remarkable result, as
the relationship is “not influenced by the arrival process distribution, the
service distribution, the service order, or practically anything else.”

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 94 / 97



Tools for Queueing Systems

G/M/c-like queue

online steady-state solution of a G/M/c-like queue

http://queueing-systems.ens-lyon.fr/formGMC.php

Queueing Simulation

online queueing network analyzer

http://www.stat.auckland.ac.nz/~stats255/qsim/qsim.html

JMT - Java Modelling Tools

framework for model simulation and workload analysis

http://jmt.sourceforge.net/

SimEvents

simulation engine and component library for Simulink (MATLAB)

http://www.mathworks.com/products/simevents/

Up-to-date List of relevant Queueing theory based tools:

http://web2.uwindsor.ca/math/hlynka/qsoft.html

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 95 / 97

http://queueing-systems.ens-lyon.fr/formGMC.php
http://www.stat.auckland.ac.nz/~stats255/qsim/qsim.html
http://jmt.sourceforge.net/
http://www.mathworks.com/products/simevents/
http://web2.uwindsor.ca/math/hlynka/qsoft.html


Relevant Lectures

IV113 Úvod do validace a verifikace (Barnat)

IA169 System Verification and Assurance (Barnat, Řehák, Matyáš)

IV109 Modelováńı a simulace (Pelánek)

IA159 Formal verification methods (Strejček)

IA158 Real Time Systems (Brázdil)

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 96 / 97



References

ITU-T recommendation Z.120: Message Sequence Charts (MSC). 2011.

ITU-T recommendation Z.100: Specification Description Language (SDL). 2011.

S. Mullender. Distributed Systems. ACM, 1993.

D. Peled. Software Reliability Methods. Springer, 2001.

R. Bræk at al. TIMe: The Integrated Method. SINTEF, 1999.

L. Doldi. Validation of Communications Systems with SDL. Wiley, 2003.

M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

W. Jia and W. Zhou. Distributed Network Systems: From Concepts to
Implementation. Springer, 2005.

M. Češka. Petriho śıtě. Akademické nakladatelstv́ı CERM Brno, 1994.

J. Markl. Petriho śıtě. VŠB - Technická univerzita Ostrava, 1996.

G. Giambene. Queuing Theory and Communications - Networks and Applications.
Springer, 2005.

D. Gross at al. Fundamentals of Queuing Theory. Wiley, 2008.

Vojtěch Řehák (FI MU) Specification and Verification Spring 2017 97 / 97


