

Lesson 3 - Cloud infrastructure – storage and data repositories

Milan Brož Software engineer Storage engineering

Storage cost

OpenStack storage types

Software-defined storage concepts

Data persistence and redundancy

Virtualization

Distributed storage

Security

Q & A

Storage

- Capacity
- Availability, Reliability
- Data integrity, Redundancy
- Performance
- Scalability
- Security

=> Cost

Manageability

Storage in OpenStack as an example

Persistent Storage – Example

Data persistence

Ephemeral storage

- Dissaperas when VM is terminated
- Temporary data ~ computing clusters
- Visible locally

Persistent storage

- Data always available (no dependency on instance)
- Can be shared among resources / instances

Persistent Storage Types

Object store

- binary objects of various length
- REST API

Block (volume) storage

- Block (sector-level) devices
- Can be backed by a file image

Shared file-system storage

mounted to a directory

Persistent Storage – OpenStack

Object store = SWIFT

stateless swift-proxy

Block (volume) storage = CINDER

Backend Cinder drivers (LVM, GPFS, EMC, ...)

Shared File-system = MANILA

Backend Manila drivers (Ceph, GlusterFS, NFS, ...)

Image service = GLANCE

deduplication, clones, ...

Generic Storage Concepts

Software Defined Storage

Software Defined Storage (SDS)

- "Comodity hardware with abstracted storage logic"
- Policy-based management of storage
- Virtualization
- Resource management
- Similar concept as Software Defined Network (SDN)
 Note: distributed storage is mostly about networking!
- Thin provisioning, deduplication, replication, snaphsots,

. . .

SDS definition differs among vendors!

Storage layers

Hardware and low-level storage protocols

- Physical storage
 - Rotational drives / hard disk drives (HDD)
 - Flash / SSD drives
 - Persistent Memory (byte-addressable!)
 - Tapes, magneto-optical drives, ...
- Block-oriented storage access protocols
 - "Small Computer System Interface" (SCSI), Serial Attached SCSI (SAS)
 - Serial ATA (SATA)
 - Fibre channel (FC) (not only fiber-optic)
 - InfiniBand (IB)

NAS – Storage layers

Storage connectivity through network

- Direct-Attached Storage (DAS)
 - local, host-attached

- remote storage device
- communication protocol
 - usually over IP-based network
 - high-level: NFS, CIFS, HTTP, ...
 - low-level: iSCSI (SCSI over IP), FC (point-to-point),
 Network Block Device (NBD)

SAN – Storage layers

Storage connectivity through network

- Storage Area Network (SAN)
 - private network
 - switched fabric
 - communication protocol
 - Fibre Channel
 - InfiniBand
 - FC over Ethernet (FCoE)

High Availability

- High availability (HA) assuring access to resources (data)
 - Service-level agreement (SLA)
 - common 9s levels

HA resources access

- on-demand
- active/passive
- active/active

UPTIME (%)	DOWNTIME (%)	DOWNTIME PER YEAR	DOWNTIME PER WEEK
98	2	7.3 days	3 hr 22 minutes
99	1	3.65 days	1 hr 41 minutes
99.8	0.2	17 hr 31 minutes	20 minutes 10 sec
99.9	0.1	8 hr 45 minutes	10 minutes 5 sec
99.99	0.01	52.5 minutes	1 minute
99.999	0.001	5.25 minutes	6 sec
99.9999	0.0001	31.5 sec	0.6 sec

Generic Storage Concepts Data Protection and Redundancy

Data protection

- Data integrity protection
 - random error detection (parity) / correction
- Erasure codes Forward Error Correction (FEC)
 - Redundancy
 - RAID (Redundant Array of Independent Disks)
 - Erasure coding in distributed storage
- Backup and disaster recovery
 - "RAID is not a backup!"
 - File corruption, bugs (disk, controller, OS, application, ...)
 - Admin error, malware
 - Catastrophic failure (datacentre fire)
 - Offline and off-site backup replica

RAID – Data protection

Common non-RAID and RAID disk configurations

- **JBOD** "Just a Bunch of Disks" (collection of disks, no redundacy)
- **RAID-0** striping (for performance, no redundancy, no parity)
- **RAID-1** mirroring (no parity)
- RAID-5 block-level striping + distributed parity (XOR)
- RAID-6 block-level striping + double distributed parity
- RAID-10 nested RAID example (1+0: striping over mirrored drives)
- RAIDZ (in ZFS) similar to RAID-5, dynamic stripes, self-healing
- MAID (Massive Array of Idle Disks) "Write once, read occasionally"

...

- Degraded mode
 - RAID-5 (RAID-6 soon): large drives reconstruction time, fail during rebuild
- Hardware RAID vs software RAID vs "fake RAID" (processing in fw/driver)

Erasure coding – Data protection

- Data protection is trade-off
 - Storage overhead
 - Reconstruction cost
 - Reliability
 - Still active research ...
 - From simple XOR (RAID) to Galois Field arithmetic GF(2^x)
 - Reed-Solomon codes, Pyramid codes
 - Bit-Matrix codes

• • •

Erasure coding – Data protection

Erasure codes trade-off and efficient solution

Generic Storage Concepts Virtualization

Storage Pool

Storage pool

set of disks, blocks, ... allocatable area for data

Pre-allocated

partition table, logical volume in Logical Volume Manager

On-demand allocated

- Thin provisioning (only blocks in use are allocated)
- Flexible allocation
- Used in snapshots
- Possible over-allocation (sharing "unallocated" space)

Storage Pool Example

Storage Pool

Volume Group: Linux Logical Volume Manager

Snapshots

- Snapshot of storage in specific time
 - Allows quick revert to older state (recovery)
- Copy on Write (COW) principle
 - delayed copy to snapshot (before origin write)
 - write to origin => need to copy the changed block first

Template

- Application of deduplication + snapshots (+ thin provisioning)
- Virtual machine template
 - base operating system
 - common configuration (networking, firewall, ...)
 - common applications (webservers, user packages, ...)
- One base image, only changes are stored
- Application containers + template
 - used in Docker

Deduplication / Compression

Deduplication

- avoid to store repeated data
- file or block level
- space-efficient, stateless mode
- deduplication performance
- data corruption amplification

Compression

- more generic algorithms
- special case: zeroed blocks

Performance

Tiered storage

- Several layers of storage in one chain
- Different performace, availability, recovery requirements
- Cache (REST API)

Virtualization of drivers

virtio, pass-through device

Generic Storage Concepts Distributed Storage

Distributed storage

Clustered => cooperating nodes
Distributed => storage + network

Distributed storage transparency

- Access (same as local)
- Location (any node)
- Failure (self-healing)

Distributed storage

Distributed storage / file-systems examples

- Ceph, GlusterFS (Red Hat)
- General Parallel File System GPFS (IBM)
- Hadoop File-System HDFS (Apache)
- Windows Distributed File-System (Microsoft)
- GoogleFS / GFS (Google)
- Isilon (EMC²)

. . .

CEPH – Distributed storage

GlusterFS – Distributed storage

Example of access of **GlusterFS** resources

Generic Storage Concepts Security

- Security policies
- Confidentiality
 - Storage encryption (at-rest)
 - Data connection encryption (in-transit)
 - Key management
- Authentication
- Integrity (in cryptography sense authenticated encryption)
- Access control, permissions
- Secure data disposal / destruction
- Audit

Cloud Storage Encryption

Encryption on client side

- "End-to-End" encryption
- Lost Efficiency for deduplication/compression

Encryption on server side

 Partially lost confidentiality for clients (server has access to decrypted data)

Data at-rest – combination of ...

- Full disk encryption
- Filesystem encryption
- Object store encryption

