
IA159 Formal Verification Methods
Introduction

Jan Strejček

Faculty of Informatics
Masaryk University



Agenda

Agenda
basic information about the course
quick overview of formal methods
selected topics

IA159 Formal Verification Methods: Introduction 2/41



What does “Formal Verification Methods” mean?

Formal methods are a collection of notations and techniques
for describing and analyzing systems. Methods
are formal in the sense that they are based on
some mathematical theories, such as logic,
automata or graph theory. [Pel01]

Verification is the process of applying a manual or an
automatic technique that is supposed to establish
whether the code either satisfies a given property
or behaves in accordance with some higher-level
description of it. [Pel01]

IA159 Formal Verification Methods: Introduction 3/41



What does “Formal Verification Methods” mean?

In the context of this course, formal verification methods are
techniques (usually based on mathematical theories) for
analysing systems with the aim to improve their quality and
reliability.

In other words, methods that can find a bug or prove its
absence.

IA159 Formal Verification Methods: Introduction 4/41



What does “Formal Verification Methods” mean?

In the context of this course, formal verification methods are
techniques (usually based on mathematical theories) for
analysing systems with the aim to improve their quality and
reliability.

In other words, methods that can find a bug or prove its
absence.

IA159 Formal Verification Methods: Introduction 5/41



Focus of the course

The course is focused on theoretical and algorithmic bases
of selected verification methods.
The software engineering aspects of verification methods
are beyond the scope of this course.

IA159 Formal Verification Methods: Introduction 6/41



Literature

Books (cover only some topics of the course):
D. A. Peled: Software Reliability Methods, Springer, 2001.
E. M. Clarke, O. Grumberg, and D. A. Peled: Model
Checking, MIT, 1999.
Ch. Baier and J.-P. Katoen: Principles of Model Checking,
MIT, 2008.
D. S. Scott: The Seventeen Provers of the World, Springer,
2006.
. . .

Other sources (mainly journal or conference papers) will
be referred and available in Study materials in IS.

IA159 Formal Verification Methods: Introduction 7/41



Connections to other courses

Mandatory prerequisites
IV113 Introduction to Validation and Verification or
IA169 System Verification and Assurance

Other relevant courses
IA006 Automata theory (aka FJA II)
IA040 Modal and Temporal Logics for Processes
IV101 Seminar on Verification
IV022 Design and Verification of Algorithms

IA159 Formal Verification Methods: Introduction 8/41



Connections to other courses

Mandatory prerequisites
IV113 Introduction to Validation and Verification or
IA169 System Verification and Assurance

Other relevant courses
IA006 Automata theory (aka FJA II)
IA040 Modal and Temporal Logics for Processes
IV101 Seminar on Verification
IV022 Design and Verification of Algorithms

IA159 Formal Verification Methods: Introduction 9/41



Examination

There will be an oral exam at the end.
No intrasemestral tests, no written exams, no mandatory
homeworks.

IA159 Formal Verification Methods: Introduction 10/41



Overview of verification methods



Basic verification methods

testing
deductive verification (with use of theorem provers)
equivalence checking
reachability analysis and model checking
abstract interpretation and other static analyses
symbolic execution

Other related techniques
abstraction
slicing
SAT/SMT solving
Craig interpolation

IA159 Formal Verification Methods: Introduction 12/41



Abstraction

reduces the size of systems to be analyzed
can transform an infinite-state system into a finite one
the set of system behaviours is usually increased (source
of false alarms)

x = 0

x = 1

x = 2

x = 3

x = 0

x > 0

IA159 Formal Verification Methods: Introduction 13/41



Slicing

reduces the size of systems on the source code level
the reduced system preserves values of given variables at
given control locations
M. Weiser: Program Slicing, IEEE Transactions on
Software Engineering 10(4), 1984.

IA159 Formal Verification Methods: Introduction 14/41



Slicing: example

1: char *copy(char *dst, char *src, int n, int *L) {
2: int i, len;
3: len = 0;
4: if (src != NULL && dst != NULL) {
5: len = n;
6: lock(L);
7: }
8: i = 0;
9: while (i < len) {

10: dst[i] = src[i];
11: i++;
12: }
13: if (len > 0) {
14: unlock(L);
15: }
16: return dst;
17: }

Assume that we are interested only in values of lock L at the end of line 16.

IA159 Formal Verification Methods: Introduction 15/41



Slicing: example

1: char *copy(char *dst, char *src, int n, int *L) {
2: int i, len;
3: len = 0;
4: if (src != NULL && dst != NULL) {
5: len = n;
6: lock(L);
7: }
8: i = 0;
9: while (i < len) {

10: dst[i] = src[i];
11: i++;
12: }
13: if (len > 0) {
14: unlock(L);
15: }
16: return dst;
17: }

Assume that we are interested only in values of lock L at the end of line 16.

IA159 Formal Verification Methods: Introduction 16/41



SAT/SMT solving

SAT problem is to decide satisfiability of a given propositional
logic formula.

Satisfiability Modulo Theories (SMT) problem is to decide
satisfiability of a given first-order logic formula with
respect to a given theory (e.g. theory of integers
with addition and substraction).

crucial for symbolic execution, abstraction, deductive
verification
A. R. Bradley and Z. Manna: The Calculus of Computation:
Decision Procedures with Applications to Verification,
Springer, 2007.

IA159 Formal Verification Methods: Introduction 17/41



Craig interpolation

if ϕ =⇒ ψ then there exists an interpolant ρ such that
ϕ =⇒ ρ =⇒ ψ and ρ uses only propositional variables
occurring in both ϕ and ψ
ρ overapproximates ϕ and it is usually smaller than ϕ
crucial for ic3, Ultimate Automizer, and many
methods/tools using abstraction refinement
W. Craig: Three uses of the Herbrand-Gentzen theorem in
relating model theory and proof theory, The Journal of
Symbolic Logic 22(3), 1957.

IA159 Formal Verification Methods: Introduction 18/41



Testing

simple, feasible, very good cost/performance ratio
very effective in early stages of debugging process
applicable directly to real systems
cannot guarantee that there are no errors
in practice: standard technique for enhancing the quality of
systems, wide tool support

IA159 Formal Verification Methods: Introduction 19/41



Deductive verification

Deductive verification is a method for proving that, for any input
values satisfying a given initial condition, a given program
terminates and resulting variable values satisfy a given final
assertion.

If initial condition x2 > 0 holds, then the execution of
y1=0;
y2=0;
while (y2 < x2) {

y1 = y1 + x1;
y2++;

}

always terminates and the resulting variable values satisfy final
assertion

y1 = x1 ∗ x2.

IA159 Formal Verification Methods: Introduction 20/41



Deductive verification

Deductive verification is a method for proving that, for any input
values satisfying a given initial condition, a given program
terminates and resulting variable values satisfy a given final
assertion.

If initial condition x2 > 0 holds, then the execution of
y1=0;
y2=0;
while (y2 < x2) {

y1 = y1 + x1;
y2++;

}

always terminates and the resulting variable values satisfy final
assertion y1 = x1 ∗ x2.

IA159 Formal Verification Methods: Introduction 21/41



Deductive verification

applicable to models or small parts of real systems
needs a huge effort of an expert on both deductive
verification and systems under verification
can guarantee that (a model of) a real system satisfies a
given property
in practice: used rarely (e.g. partial correctness of FPU in
AMD processors)
tools: Coq, ACL2, Dafny, . . .

IA159 Formal Verification Methods: Introduction 22/41



Equivalence checking

Equivalence checking decides whether two given systems are
equivalent with respect to a given equivalence.

applicable mainly to models of real systems
needs a detailed formal specification of a system under
verification (or another “second system”)
there are no algorithms for reasonable equivalences and
infinite-state systems
in practice: some specific applications (e.g. equivalence of
different levels of hardware design)

IA159 Formal Verification Methods: Introduction 23/41



Reachability analysis and model checking

Reachability analysis decides whether any run of a given
system can reach a given state. Model checking decides
whether each run of a given system satisfies a given
specification property (which is typically described by a
temporal logic formula).

system M specification ϕ

model checking
algorithm

YES,
M satisfies ϕ

NO,
M violates ϕ

IA159 Formal Verification Methods: Introduction 24/41



Reachability analysis and model checking

needs formal description of the property to be checked
fully automatic, but feasible mainly for relatively small
finite-state systems
succesfull verification of real systems may require
provision of a suitable abstraction
in practice: a standard technique for verification of simple
hardware designs, used also for verification of small
systems (e.g. communication protocols)
tools: DIVINE, SPIN, NuSMV, . . .

IA159 Formal Verification Methods: Introduction 25/41



Abstract interpretation and other static analyses

Abstract interpretation and other static analyses are typically
used to overapproximate or underapproximate a set of
reachable states of selected program variables in each program
location. The analyzed code is not executed.

Consider the following states of a lock x :

U L

lock(x)

unlock(x)

DU

unlock(x)

DL

lock(x)

U = unlocked error states: DU = double unlock
L = locked DL = double lock

IA159 Formal Verification Methods: Introduction 26/41



Abstract interpretation and other static analyses

1: char *copy(char *dst, char *src, int n, int *L) {
2: int i, len; U
3: len = 0; U
4: if (src != NULL && dst != NULL) { U
5: len = n; U
6: lock(L); L
7: } U,L
8: i = 0; U,L
9: while (i < len) { U,L

10: dst[i] = src[i]; U,L
11: i++; U,L
12: } U,L
13: if (len > 0) { U,L
14: unlock(L); DU,U
15: } U,L
16: return dst; U,L
17: }

The indicated double unlock error is a false positive.

IA159 Formal Verification Methods: Introduction 27/41



Abstract interpretation and other static analyses

applicable directly to source code of real systems (or
directly to executables)
feasible
can verify only a specific class of properties (including
many interesting properties)
may produce false alarms
fully automatic
in practice: some static analysis is performed by almost
every compiler, there are many efficient tools able to work
with big pieces of real software (e.g. Linux kernel)
tools: Coverity, CodeSonar, Stanse, . . .

IA159 Formal Verification Methods: Introduction 28/41



Symbolic execution

Symbolic execution executes the code on abstract symbols
instead of input values.

true false
x1>x2−3

x2:=3*x2

x2:=16 x1:=5

x1=a; x2=b

true

true

x1=a; x2=3b

a<=3b−3

a<=3b−3

x1=5; x2=3b

a>3b−3

x1=a; x2=3b

a>3b−3

x1=a; x2=16

begin

x1=a; x2=3b

IA159 Formal Verification Methods: Introduction 29/41



Symbolic execution

can be seen as exhaustive testing
applicable directly to source code of real systems (or
directly to executables)
fully automatic
does not report false alarms
feasible, but the computation usually did not finish due to
large or even infinite number of execution paths
in practice: several successful applications, but
computational cost of pure symbolic execution is too high
tools: Klee, . . .

IA159 Formal Verification Methods: Introduction 30/41



Combined methods

popular combinations:
model checking + abstraction + counter-example guided
abstraction refinement (CEGAR)
abstract interpretation + CEGAR
testing + model checking
testing + symbolic execution + Craig interpolation

the aim is to develop methods which are automatic (as
much as possible) and applicable directly to sources or
binaries of real systems
may be incomplete and/or produce some false alarms
in practice: already has some specific applications in
verification (e.g. verification of Windows drivers by Static
Driver Verifier, CPAchecker, Ultimate Automizer) and many
applications in test-generation and bug-finding (e.g. SAGE,
PEX, CBMC)
the most promising approaches usually combine several
basic techniques

IA159 Formal Verification Methods: Introduction 31/41



Verification of infinite-state systems



Finite vs. infinite-state systems

y1=0;
y2=0;
while (y2 < x2) {

y1 = y1 + x1;
y2++;

}

verification of algorithm vs. verification of programs
all verification problems are decidable for finite systems
for infinite-state systems, decidability depends on the
problem and type of the system
explicit and symbolic (BDD-based) model checking
applicable only to finite systems

IA159 Formal Verification Methods: Introduction 33/41



PRS-hierarchy of infinite-state systems

The hierarchy compares expressive power of many classes of
infinite-state systems including BPA, BPP, PA, Petri nets (PN),
and pushdown processes (PDA). systems.

PRS
(G,G)-PRS

PAD
(S,G)-PRS

PAN
(P,G)-PRS

PDA
(S,S)-PRS

PA
(1,G)-PRS

PN
(P,P)-PRS

BPA
(1,S)-PRS

BPP
(1,P)-PRS

finite systems
(1,1)-PRS

IA159 Formal Verification Methods: Introduction 34/41



Decidability of equivalence checking

The decidability boundary of strong bisimulation in the
PRS-hierarchy.

PRS

PAD PAN

PDA PA PN

BPA BPP

finite systems

undecidable

decidable

IA159 Formal Verification Methods: Introduction 35/41



Decidability of model checking

The decidability boundary of the action-based LTL model
checking in the PRS-hierarchy.

PRS

PAD PAN

PDA PA PN

BPA BPP

finite systems

undecidable

decidable

IA159 Formal Verification Methods: Introduction 36/41



Actual topics of the course

deductive verification
theorem prover ACL2 + Demo

reachability analysis & verification of infinite-state systems
reachability analysis of pushdown systems

LTL model checking
translation of LTL to Büchi automata (via alternating aut.)
partial order reduction
abstraction and CEGAR

static analysis
abstract interpretation
shape analysis (abs. int. of dynamic memory operations)

Ultimate Automizer: verification via
automata, symbolic execution, and interpolation

IA159 Formal Verification Methods: Introduction 37/41



Automata-based LTL model checking of finite systems

system M LTL formula ϕ

abstraction AM
represents executions of M

Büchi automaton A¬ϕ
accepts words violating ϕ

product Büchi automaton B
L(B) = L(AM) ∩ L(A¬ϕ)

reduced automaton B′

L(B′) ?
= ∅

e.g. Nested DFS algorithm

YES NO
+ counterexample

IA159 Formal Verification Methods: Introduction 38/41



Automata-based LTL model checking of finite systems

system M LTL formula ϕ

abstraction AM
represents executions of M

Büchi automaton A¬ϕ
accepts words violating ϕ

product Büchi automaton B
L(B) = L(AM) ∩ L(A¬ϕ)

reduced automaton B′

L(B′) ?
= ∅

e.g. Nested DFS algorithm

YES NO
+ counterexample

IA159 Formal Verification Methods: Introduction 39/41



An extra piece of motivation

Formal verification is used in Microsoft, Intel, AMD,. . .
Formal verification is usually a supplementary method, the
main methods are testing or simulation.
In development of execution cluster of Core i7, formal
verification has been used as a primary validation vehicle
(simulation has been dropped)
only 3 bugs escaped to silicon (2 other bugs were detected
during the pre-silicon stage by full chip testing)
this number is usually about 40
the previous minimum is 11
More information in Kaivola et al: Replacing Testing with
Formal Verification in Intel Core i7 Processor execution
Engine Validation, CAV 2009, LNCS 5643, Springer, 2009.

IA159 Formal Verification Methods: Introduction 40/41



Coming next week

Theorem prover ACL2
http://www.cs.utexas.edu/users/moore/acl2/

How it works?
What is it good for?
Including a live show!

IA159 Formal Verification Methods: Introduction 41/41


