IA159 Formal Verification Methods LTL→BA via Alternating 1-Weak BA

Jan Strejček

Faculty of Informatics Masaryk University

Focus and sources

Focus

- linear temporal logic (LTL) and Büchi automata (BA)
- alternating 1-weak Büchi automata (A1W)
- translation LTL→A1W
- translation A1W→BA

Source

M. Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic, LNCS 1043, Springer, 1995.

Syntax of LTL

Linear Temporal Logic (LTL) is defined by

$$\varphi ::= \top \mid a \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \mathsf{X} \varphi \mid \varphi_1 \mathsf{U} \varphi_2$$

where \top stands for true and *a* ranges over a countable set *AP* of atomic propositions.

Abbreviations: $\bot \equiv \neg \top$ $\mathsf{F} \varphi \equiv \top \mathsf{U} \varphi$ $\mathsf{G} \varphi \equiv \neg \mathsf{F} \neg \varphi$

Terminology and intuitive meaning

 $egin{array}{llll} Xa & & \mbox{next} & & \mbox{$a = 0$} & \mbox{$b = 0$} & \mbox{$b = 0$} & \mbox{$a = 0$} & \mbox{$b = 0$$

Semantics of LTL

Let $\Sigma=2^{AP'}$, where $AP'\subseteq AP$ is a finite subset. We interpret LTL on infinite words $w=w(0)w(1)\ldots\in\Sigma^\omega$. By w_i we denote the suffix of w of the form $w(i)w(i+1)w(i+2)\ldots$ The validity of an LTL formula φ for $w\in\Sigma^\omega$, written $w\models\varphi$, is defined as

```
\begin{array}{lll} w \models \top & \\ w \models a & \text{iff} & a \in w(0) \\ w \models \neg \varphi & \text{iff} & w \not\models \varphi \\ w \models \varphi_1 \land \varphi_2 & \text{iff} & w \models \varphi_1 \land w \models \varphi_2 \\ w \models \mathsf{X}\varphi & \text{iff} & w_1 \models \varphi \\ w \models \varphi_1 \ \mathsf{U} \ \varphi_2 & \text{iff} & \exists i \in \mathbb{N}_0 : w_i \models \varphi_2 \land \forall \ 0 \leq j < i : w_i \models \varphi_1 \end{array}
```

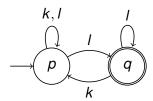
Given an alphabet Σ , an LTL formula φ defines the language

$$L^{\Sigma}(\varphi) = \{ \mathbf{w} \in \Sigma^{\omega} \mid \mathbf{w} \models \varphi \}.$$

Büchi automata (BA)

A Büchi automaton (BA) is a tuple $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ defined precisely as a finite automaton. There are just two differences:

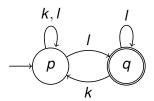
- a Büchi automaton is interpreted over infinite words
- a run is accepting if it visits some accepting state infinitely often



Büchi automata (BA)

A Büchi automaton (BA) is a tuple $A = (\Sigma, Q, \delta, q_0, F)$ defined precisely as a finite automaton. There are just two differences:

- a Büchi automaton is interpreted over infinite words
- a run is accepting if it visits some accepting state infinitely often



Accepts all infinite words over $\Sigma = \{k, l\}$ with infinitely many l.

LTL→BA translations in general

- applications in automata-based LTL model checking, vacuity checking (checks trivial validity of a specification formula), . . .
- many LTL→BA translations

```
    LTL → generalized Büchi automata (GBA) → BA (Spin)
    LTL → transition-based GBA (TGBA) → BA (Spot)
    LTL → alternating 1-weak Büchi automata (A1W) → BA
    LTL → A1W → TGBA → BA (LTL2BA, LTL3BA)
```

- ...
- translations via alternating 1-weak automata offer
 - size-reducing optimizations of alternating 1-weak BA
 - smaller resulting BA (in some cases)

LTL→BA via alternating 1-weak BA

Alternating Büchi automata

Positive boolean formulae

Positive boolean formulae over set $Q(\mathcal{B}^+(Q))$ are defined as

$$\varphi ::= \top \mid \bot \mid q \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2$$

where \top stands for true, \bot stands for false, and q ranges over Q.

$$S\subseteq Q$$
 is a model of $\varphi\iff$ the valuation assigning true just to elements of S satisfies φ

$$S$$
 is a minimal model of $\varphi \iff S$ is a model of φ and no proper (written $S \models \varphi$) subset of S is a model of φ

Examples of positive boolean formulae

formulae of $\mathcal{B}^+(\{p,q,r\})$	(minimal) models
	no model \emptyset {p} {q} {r} {p q}
$p \wedge q$	\emptyset , $\{p\}$, $\{q\}$, $\{r\}$, $\{p,q\}$, $\{p,q\}$, $\{p,q,r\}$
$p \lor (q \land r)$ $p \land (q \lor r)$	{p}, {p,q}, {p,r}, {q,r}, {p,q,r} {p,q}, {p,r}, {p,q,r}

Examples of positive boolean formulae

formulae of $\mathcal{B}^+(\{p,q,r\})$	(minimal) models
_	no model
Т	\emptyset , { p }, { q }, { r }, { p , q }, { p , q }, { p , q , r }
$m{p} \wedge m{q}$	$\{p,q\},\{p,q,r\}$
$p \lor (q \land r)$	$\{p\}, \{p,q\}, \{p,r\}, \{q,r\}, \{p,q,r\}$ $\{p,q\}, \{p,r\}, \{p,q,r\}$
$p \wedge (q \vee r)$	$\{p,q\}, \{p,r\}, \{p,q,r\}$

minimal models = clauses in disjunctive normal form

$$\varphi \equiv \bigvee_{S \models \varphi} (\bigwedge_{p \in S} p)$$

Alternating Büchi automata

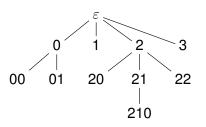
An alternating Büchi automaton is a tuple $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$, where

- \blacksquare Σ is a finite alphabet,
- Q is a finite set of states,
- \bullet $\delta: Q \times \Sigma \to \mathcal{B}^+(Q)$ is a transition function,
- $q_0 \in Q$ is an initial state,
- $F \subseteq Q$ is a set of accepting states.

Trees

A tree is a set $T \subseteq \mathbb{N}_0^*$ such that if $xc \in T$, where $x \in \mathbb{N}_0^*$ and $c \in \mathbb{N}_0$, then also

- $x \in T$ and
- $xc' \in T$ for all $0 \le c' < c$.

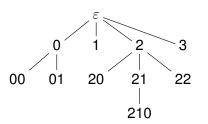


$$T = \{ \ \varepsilon, 0, 1, 2, 3, \\ 00, 01, 20, \\ 21, 22, 210 \ \}$$

Trees

A tree is a set $T \subseteq \mathbb{N}_0^*$ such that if $xc \in T$, where $x \in \mathbb{N}_0^*$ and $c \in \mathbb{N}_0$, then also

- $x \in T$ and
- $xc' \in T$ for all 0 < c' < c.



$$T = \{ \ \varepsilon, 0, 1, 2, 3, \\ 00, 01, 20, \\ 21, 22, 210 \ \}$$

A Q-labeled tree is a pair (T, r) of a tree T and a labeling function $r: T \to Q$.

Alternating Büchi automata: a run

A run of an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ on word $w=w(0)w(1)\ldots\in\Sigma^\omega$ is a Q-labeled tree (T,r) such that

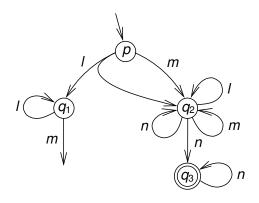
- $r(\varepsilon) = q_0$ and
- for each $x \in T$: $\{r(xc) \mid c \in \mathbb{N}_0, xc \in T\} \models \delta(r(x), w(|x|))$.

A run (T,r) is accepting iff for each infinite path π in T it holds that $Inf(\pi) \cap F \neq \emptyset$, where $Inf(\pi)$ is the set of all labels (i.e. states) appearing on π infinitely often.

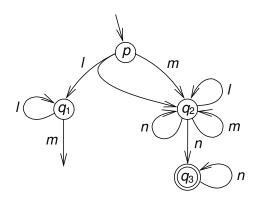
An automaton \mathcal{A} accepts a word w iff there is an accepting run of \mathcal{A} on w. We set

$$L(A) = \{ w \in \Sigma^{\omega} \, | \, A \text{ accepts } w \}.$$

Example of an alternating Büchi automaton



Example of an alternating Büchi automaton



Accepts the language $I^*m(I+m+n)^*n^{\omega}$.

Alternating 1-weak Büchi automata (A1W)

Intuitively, an alternating BA is 1-weak (or linear or very weak, written A1W or VWAA) if it contains no cycles except selfloops.

Formally, let $A = (\Sigma, Q, \delta, q_0, F)$ be an alternating BA. For each $p \in Q$ we define the set of all successors of p as

$$Succ(p) = \{q \mid \exists I \in \Sigma, S \subseteq Q : S \cup \{q\} \models \delta(p, I)\}.$$

Automaton \mathcal{A} is 1-weak (or linear or very weak) if there exists a partial order \leq on Q such that for all $p, q \in Q$ it holds:

$$q \in Succ(p) \implies q \leq p$$

Notes

- standard Büchi automata are alternating Büchi automata where each $\delta(p, l)$ is \perp or a disjunction of states
- A1W automata have the same expressive power as LTL

LTL→BA via alternating 1-weak BA

LTL→A1W

LTL→A1W

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

 $\mathbf{Q} = \{ \mathbf{q}_{\psi}, \mathbf{q}_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi \}$

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

- $lackbox{Q} = \{ q_{\psi}, q_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi \}$
- δ is defined as follows (where $\overline{\alpha} \in \mathcal{B}^+(Q)$ satisfies $\overline{\alpha} \equiv \neg \alpha$)

$$\begin{array}{lll} \delta(\textbf{\textit{q}}_{\top},\textbf{\textit{I}}) &= \top & \overline{\top} &= \bot \\ \delta(\textbf{\textit{q}}_{a},\textbf{\textit{I}}) &= \top \text{ if } \textbf{\textit{a}} \in \textbf{\textit{I}}, \bot \text{ otherwise} & \overline{\bot} &= \top \\ \delta(\textbf{\textit{q}}_{\neg\psi},\textbf{\textit{I}}) &= \overline{\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}})} & \overline{\textbf{\textit{q}}_{\neg\psi}} &= \textbf{\textit{q}}_{\psi} \\ \delta(\textbf{\textit{q}}_{\psi \wedge \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) & \overline{\overline{\textbf{\textit{q}}}_{\psi}} &= \underline{\textbf{\textit{q}}}_{\neg\psi} \\ \delta(\textbf{\textit{q}}_{X\psi},\textbf{\textit{I}}) &= \textbf{\textit{q}}_{\psi} & \overline{\beta} \wedge \overline{\gamma} &= \overline{\beta} \vee \overline{\gamma} \\ \delta(\textbf{\textit{q}}_{\psi \cup \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) \vee (\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \textbf{\textit{q}}_{\psi \cup \rho}) & \overline{\beta} \vee \gamma &= \overline{\beta} \wedge \overline{\gamma} \end{array}$$

Input: an LTL formula φ and an alphabet $\Sigma = 2^{AP'}$

for some finite $AP' \subseteq AP$

Output: A1W automaton $\mathcal{A} = (\Sigma, Q, \delta, q_{\varphi}, F)$ accepting $L^{\Sigma}(\varphi)$

- lacksquare $Q = \{q_{\psi}, q_{\neg \psi} \mid \psi \text{ is a subformula of } \varphi\}$
- δ is defined as follows (where $\overline{\alpha} \in \mathcal{B}^+(Q)$ satisfies $\overline{\alpha} \equiv \neg \alpha$)

$$\begin{array}{lll} \delta(\textbf{\textit{q}}_{\top},\textbf{\textit{I}}) &= \top & \overline{\top} &= \bot \\ \delta(\textbf{\textit{q}}_{a},\textbf{\textit{I}}) &= \overline{\top} \text{ if } \textbf{\textit{a}} \in \textbf{\textit{I}}, \bot \text{ otherwise} & \overline{\bot} &= \top \\ \delta(\textbf{\textit{q}}_{\neg\psi},\textbf{\textit{I}}) &= \overline{\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}})} & \overline{\textbf{\textit{q}}_{\neg\psi}} &= \textbf{\textit{q}}_{\psi} \\ \delta(\textbf{\textit{q}}_{\psi \wedge \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) & \overline{\textbf{\textit{q}}_{\psi}} &= \underline{\textbf{\textit{q}}}_{\neg\psi} \\ \delta(\textbf{\textit{q}}_{X\psi},\textbf{\textit{I}}) &= \textbf{\textit{q}}_{\psi} & \overline{\beta} \wedge \overline{\gamma} &= \overline{\beta} \vee \overline{\gamma} \\ \delta(\textbf{\textit{q}}_{\psi \cup \rho},\textbf{\textit{I}}) &= \delta(\textbf{\textit{q}}_{\rho},\textbf{\textit{I}}) \vee (\delta(\textbf{\textit{q}}_{\psi},\textbf{\textit{I}}) \wedge \textbf{\textit{q}}_{\psi \cup \rho}) & \overline{\beta} \vee \gamma &= \overline{\beta} \wedge \overline{\gamma} \end{array}$$

■ $F = \{q_{\neg(\psi \cup \rho)} \mid \psi \cup \rho \text{ is a subformula of } \varphi\}$

Note that every infinite path of a run of \mathcal{A} has a suffix labeled with a state of the form $q_{\psi \cup \rho}$ or $q_{\neg(\psi \cup \rho)}$ (other states have no loops and can appear at most once on a path). F is defined to prevent the first case: $\psi \cup \rho$ is satisfied only if ρ eventually holds.

Theorem

Given an LTL formula φ and an alphabet Σ , one can construct an A1W automaton $\mathcal A$ accepting $L^\Sigma(\varphi)$ and such that the number of states of $\mathcal A$ is linear in the length of φ .

LTL→BA via alternating 1-weak BA

 $A1W \rightarrow BA$

Input: an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ Output: a BA $\mathcal{A}'=(\Sigma,Q',\delta',q_0',F')$ accepting $\mathcal{L}(\mathcal{A})$

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $\mathcal{L}(\mathcal{A})$

Intuitively, \mathcal{A}' tracks states on each level of the computation tree of \mathcal{A} . Moreover, \mathcal{A}' has to divide the set of states into two sets: states labeling paths with recent occurrence of an accepting state, and states labeling the other paths.

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $\mathcal{L}(\mathcal{A})$

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $\mathcal{L}(\mathcal{A})$

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $L(\mathcal{A})$

- $Q' = 2^Q \times 2^Q$
- $q_0' = (\{q_0\}, \emptyset)$
- $\delta'((U, V), I)$ is defined as:
 - if $U \neq \emptyset$ then

$$\delta'((U,V),I) = \{(U',V') \mid \exists X,Y \subseteq Q \text{ such that } X \models \bigwedge_{q \in U} \delta(q,I) \text{ and } Y \models \bigwedge_{q \in V} \delta(q,I) \text{ and } U' = X \setminus F \text{ and } V' = Y \cup (X \cap F) \}$$

 \blacksquare if $U = \emptyset$ then

$$\delta'((\emptyset, V), I) = \{(U', V') \mid \exists Y \subseteq Q \text{ such that}$$

$$Y \models \bigwedge_{q \in V} \delta(q, I) \text{ and}$$

$$U' = Y \setminus F \text{ and } V' = Y \cap F)\}$$

Input: an alternating BA $\mathcal{A} = (\Sigma, Q, \delta, q_0, F)$ Output: a BA $\mathcal{A}' = (\Sigma, Q', \delta', q'_0, F')$ accepting $L(\mathcal{A})$

- $q_0' = (\{q_0\}, \emptyset)$
- $\delta'((U, V), I)$ is defined as:
 - if $U \neq \emptyset$ then

$$\delta'((U,V),I) = \{(U',V') \mid \exists X,Y \subseteq Q \text{ such that } X \models \bigwedge_{q \in U} \delta(q,I) \text{ and } Y \models \bigwedge_{q \in V} \delta(q,I) \text{ and } U' = X \setminus F \text{ and } V' = Y \cup (X \cap F) \}$$

• if $U = \emptyset$ then

$$\delta'((\emptyset, V), I) = \{(U', V') \mid \exists Y \subseteq Q \text{ such that}$$

$$Y \models \bigwedge_{q \in V} \delta(q, I) \text{ and}$$

$$U' = Y \setminus F \text{ and } V' = Y \cap F\}$$

$$F' = \{\emptyset\} \times 2^Q$$

Theorem

Given an alternating BA $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$, one can construct a BA \mathcal{A}' accepting $L(\mathcal{A})$ and such that the number of states of \mathcal{A}' is $2^{\mathcal{O}(|Q|)}$.

Corollary

Given an LTL formula φ and an alphabet Σ , one can construct a BA \mathcal{A}' accepting $L^{\Sigma}(\varphi)$ and such that the number of states of \mathcal{A}' is $2^{\mathcal{O}(|\varphi|)}$.

Coming next week

Partial order reduction

- When can a state/transition be safely removed from a Kripke structure?
- What is a stuttering principle?
- Can we effectively compute the reduction?