IA169 System Verification and Assurance

Deductive Verification

Jiří Barnat

Validation and Verification

• A general goal of V&V is to prove correct behaviour of algorithms.

Reminder

- Testing is incomplete.
- Testing can detect errors but cannot prove correctness.
- Model checking is limited.
- Requires finite state space description, suffers from state space explosion, verifies specific program properties only.

Conclusion

• Need for yet another way of verification.

Goal of formal verification

• The goal is to show that system behaves correctly with the same level of confidence as it is given with a mathematical proof.

Requirements

- Formally precise semantics of system behaviour.
- Formally precise definition of system properties to be shown.

Methods of formal verification

- Model checking
- Deductive verification
- Abstract interpretation

Deductive verification

Program is correct if ...

- ... it terminates for a valid input and returns correct output.
- There is a need to show two parts partial correctness and termination.

Partial correctness (Correctness, Soundness)

• If the computation terminates for valid input values (i.e. values for which the program is defined) the resulting values are correct.

Termination (Completness, Convergence)

• If executed on valid input values, the computation always terminates.

Serial programs (sequential)

- Input-output-closed programs.
 - All input values are known prior program execution.
 - All output values are stored in output variables.
- Examples: Quick sort, Greatest Common Divider, ...

General Principle

- Program instructions are viewed as state transformers.
- The goal is to show that the mutual relation of input and output values is as expected or given by the specification.
- To verify the correctness of procedure of transformation of input values to output values.

Expressing Program Properties

State of Computation

• State of computation of a program is given by the value of program counter and values of all variables.

Atomic predicates

- Basic statements about individual states of the computation.
- The validity is deduced purely from the values of variables given by the state of computation.
- Examples of atomic propositions: (x == 0), (x1 >= y3).
- Beware of the scope of variables.

Set of States

• Can be described with a Boolean combination of atomic predicates.

• Example:
$$(x == m) \land (y > 0)$$

IA169 System Verification and Assurance - 07

Assertion

- For a given program location defines a Boolean expression that should be satisfied with the current values of program variables in the given location during program execution.
- Invariant of a program location.

Assertions – Proving Correctness

- Assigning properties to individual locations of Control Flow Graph.
- Robert Floyd: Assigning Meanings to Programs (1967)

Testing

• Assertion violation serves as a test oracle.

Run-Time Checking

- Checking location invariants during run-time.
- Improved error localisation as the assertion violated relates to a particular program line.

Undetected Errors

- If an error does not manifest itself for the given input data.
- If the program behaves non-deterministically (parallelism).

Hoare Proof System

Hoare Proof System

Principle

- Programs = State Transformers.
- Specification = Relation between input and output state of computation.

Hoare logic

- Designed for showing partial correctness of programs.
- Let P and Q be predicates and S be a program, then
 {P} S {Q}

is the so called *Hoare triple*.

Intended meaning of $\{P\} S \{Q\}$

• S is a program that transforms any state satisfying *pre-condition* P to a state satisfying *post-condition* Q.

Pre- and Post- Conditions

Example

- $\{z = 5\} \ x = z * 2 \ \{x > 0\}$
- Valid triple, though post-condition could be more precise (stronger).
- Example of a stronger post-condition: $\{x > 5 \land x < 20\}$.
- Obviously, $\{x > 5 \land x < 20\} \implies \{x > 0\}.$

The Weakest Pre-Condition

- P is the weakest pre-condition, if and only if
- $\{P\}S\{Q\}$ is a valid triple and
- $\forall P'$ such that $\{P'\}S\{Q\}$ is valid, $P' \implies P$.
- Edsger W. Dijkstra (1975)

How to prove $\{P\}$ S $\{Q\}$

- Pick suitable conditions P' a Q'
- Decomposition into three sub-problems:

$$\{\mathsf{P}'\} \mathrel{\mathsf{S}} \{\mathsf{Q}'\} \qquad \mathsf{P} \implies \mathsf{P}' \qquad \mathsf{Q}' \implies \mathsf{Q}$$

- Use axioms and rules of Hoare system to prove $\{P'\} S \{Q'\}$.
- $\bullet \ P \implies P' \text{ and } Q' \implies Q \text{ are called proof obligations.}$
- Proof obligations are proven in the standard way.

Axiom

Assignment axiom: {φ[x replaced with k]} x := k {φ}

Meaning

Triple {P}x := y{Q} is an axiom in Hoare system, if it holds that P is equal to Q in which all occurrences of x has been replaced with y.

Examples

Hoare Logic – Example 1

Example

- Prove that the following program returns value greater than zero if executed for value of 5.
- Program: *out* := *in* * 2

Proof

- 1) We built a Hoare triple: $\{in = 5\} out := in * 2 \{out > 0\}$
- 2) We deduce/guess a suitable pre-condition: $\{ in*2>0 \}$
- 3) We prove Hoare triple: $\{in*2>0\} out := in*2 \{out > 0\}$ (axiom)

4) We prove auxiliary statement: $(in = 5) \implies (in * 2 > 0)$

Rule

• Sequential composition:
$$\frac{\{\phi\}S_1\{\chi\} \land \{\chi\}S_2\{\psi\}}{\{\phi\}S_1;S_2\{\psi\}}$$

Meaning

• If S_1 transforms a state satisfying ϕ to a state satisfying χ and S_2 transforms a state satisfying χ to a state satisfying ψ then the sequence S_1 ; S_2 transforms a state satisfying ϕ to a state satisfying ψ .

In the proof

Should {φ}S₁; S₂{ψ} be used in the proof, an intermediate condition χ has to be found, and {φ}S₁{χ} and {χ}S₂{ψ} have to be proven.

Axiom for skip: $\{\phi\}$ skip $\{\phi\}$

Axiom for :=:

Composition rule:

Conditional rule:

While rule:

Consequence rule:

 $\{\phi[x:=k]\}x{:=}k\{\phi\}$

 $\frac{\{\phi\}S_1\{\chi\}\land\{\chi\}S_2\{\psi\}}{\{\phi\}S_1;S_2\{\psi\}}$

 $\frac{\{\phi \land B\}S_1\{\psi\}\land\{\phi \land \neg B\}S_2\{\psi\}}{\{\phi\} \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}\{\psi\}}$

 $\frac{\{\phi \land B\}S\{\phi\}}{\{\phi\}\text{while } B \text{ do } S \text{ od } \{\phi \land \neg B\}}$

$$\frac{\phi \Longrightarrow \phi', \{\phi'\} S\{\psi'\}, \psi' \Longrightarrow \psi}{\{\phi\} S\{\psi\}}$$

Prove that for $n \ge 0$ the following code computes n!. • r = 1;while $(n \ne 0)$ { r = r * n;n = n - 1;

```
• { n \ge 0 \land t=n } {P}

r = 1;

while (n \ne 0) {

r = r * n;

n = n - 1;

}

{ r=t! } {Q}
```

- Reformulation in terms of Hoare logic.
- Note the use of auxiliary variable t.

• {
$$n \ge 0 \land t=n$$
 } {P}
r = 1;
{ $n \ge 0 \land t=n \land r = 1$ } {I1}
while $(n \ne 0)$ {
r = r * n;
n = n - 1;
} {r=t! } {Q}

• {n
$$\ge 0 \land t=n \land 1=1$$
} r=1 { n $\ge 0 \land t=n \land r=1$ }
• (n $\ge 0 \land t=n$) \implies (n $\ge 0 \land t=n \land 1=1$)

• {
$$n \ge 0 \land t=n$$
 } {P}
r = 1;
{ $n \ge 0 \land t=n \land r = 1$ } {I_1}
while $(n \ne 0)$ { $r=t!/n! \land t \ge n \ge 0$ } { {I_2}
r = r * n;
n = n - 1;
}
{ $r=t!$ } {Q}

Notes:

 \bullet Invariant of a cycle: $\{I_2\} \equiv \{ \ r{=}t!/n! \ \land \ t \geq n \geq 0 \ \}$

$$\bullet \ {\sf I}_1 \implies {\sf I}_2 \qquad (\ {\sf I}_2 \wedge \neg (n{\neq}0) \) \implies {\sf Q}$$

• {
$$n \ge 0 \land t=n$$
 } {P}
r = 1;
{ $n \ge 0 \land t=n \land r = 1$ } {I_1}
while $(n \ne 0)$ { $r=t!/n! \land t \ge n \ge 0$ } { {I_2}
r = r * n;
{ $r=t!/(n-1)! \land t \ge n > 0$ } {I_3}
n = n - 1;
}
{ $r=t!$ } {Q}

$$\label{eq:result} \begin{array}{l} \bullet \ \{ \ r^{*}n = t!/(n{\text -}1)! \ \land \ t \geq n > 0 \ \} \ r{=}r^{*}n \ \{I_{3}\} \\ \bullet \ I_{2} \ \land \ (n{\neq}0) \implies (\ r^{*}n = t!/(n{\text -}1)! \ \land \ t \geq n > 0 \) \end{array}$$

• {
$$n \ge 0 \land t=n$$
 } {P}
r = 1;
{ $n \ge 0 \land t=n \land r = 1$ } {I_1}
while $(n \ne 0)$ { $r=t!/n! \land t \ge n \ge 0$ } { I_2}
r = r * n;
{ $r=t!/(n-1)! \land t \ge n > 0$ } {I_3}
n = n - 1;
}
{ $r=t!$ } {Q}

$$\label{eq:result} \begin{array}{l} \bullet \ \{ \ r = t!/(n{-}1)! \ \land \ t \geq (n{-}1) \geq 0 \ \} \ n{=}n{-}1 \ \{l_2\} \\ \bullet \ l_3 \ \Longrightarrow \ (\ r = t!/(n{-}1)! \ \land \ t \geq (n{-}1) \geq 0 \) \end{array}$$

Observation

• Hoare logic allowed us to reduce the problem of proving program correctness to a problem of proving a set of mathematical statements with arithmetic operations.

Notice about correctness's and (in)completeness

- Hoare logic is correct, i.e. if it is possible to deduce $\{P\}S\{Q\}$ then executing program S from a state satisfying P may terminate only in a state satisfying Q.
- If a proof system is strong enough to express integral arithmetics, it is necessarily incomplete, i.e. there exists claims that cannot be proven or dis-proven using the system.
- Hoare system for proving correctness of programs is incomplete due to the proof obligations generated with the consequence rule.

Troubles with Proof Construction

- Often pre- and post- condition must be suitable reformulated for the purpose of the proof.
- It is very difficult to identify loop invariants.

Partial Correctness in Practice

- Often reduced to formulation of all the loop invariants, and demonstration that they actually are the loop invariants.
- The proof of being an invariant is often achieved with math induction.

Well-Founded Domain

- Partially ordered set that does not contain infinitely decreasing sequence of members.
- Examples: (N, <), $(PowerSet(N), \subseteq)$

Proving Termination

- For every loop in the program a suitable well-founded domain and an expression over the domain is chosen.
- It is shown that the value associated with a location cannot grow along any instruction that is part of the loop.
- It is shown that there exists at least one instruction in the loop that decreases the value of the expression.

Automating Deductive Verification

Pre-processing

- Transformation of program to a suitable intermediate language.
- Examples of IL: Boogie (Microsoft Research), Why3 (INRIA)

Structural Analysis and Construction of the Proof Skeleton

- Identification of Hoare triples, loop invariants and suitable pre- and post-conditions (some of that might be given with the program to be verified).
- Generation of auxiliary proof obligations.

Solving proof obligations

- Using tools for automated proving.
- May be human-assisted.

Tools for Automated Proving

- User guides a tool to construct a proof.
- HOL, ACL2, Isabelle, PVS, Coq, ...

Reduced to the satisfiability problem

- Employ SAT and SMT solvers.
- Z3, ...

Proof

• A finite sequence of steps that using axioms and rules of a given proof system that transforms assumptions ψ into the conclusion φ .

Observation

- For systems with finitely many axioms and rules, proofs may be systematically generated. Hence, for all provable claims the proof can be found in finite time.
- All reasonable proving systems has infinitely many axioms. Consider, e.g. an axiom x = x. This is virtually a shortcut (template) for axioms 1 = 1, 2 = 2, 3 = 3, etc.
- Semi-decidable with dove-tailing approach.

Searching for a Proof of Valid Statement

- The number of possible finite sequences of steps of rules and axiom applications is too many (infinitely many).
- In general there is no algorithm to find a proof in a given proof system even for a valid statement.
- Without some clever strategy, it cannot be expected that a tool for automated proof generation will succeed in a reasonable short time.
- The strategy is typically given by an experienced user of the automated proving tool. The user typically has to have appropriate mathematical feeling and education.
- At the end, the tool is used as a mechanical checker for a human constructed proof.

Theorem Provers

- The goal is find the proof within a given proof system.
- the proof is searched for in two modes:
 - Algorithmic mode Application of rules and axioms
 - Guided by the user of the tool.
 - Application of the general proving techniques, such as deduction, resolution, unification,
 - Search mode Looking for new valid statements
 - Employs brute-force approach and various heuristics.

Existing Tools

• The description of system (axioms, rules) as well as the claim to be proven is given in the language of the tool.

Possible Outputs

- a) Proof has been found and checked.
- b) Proof has not been found.
 - The statement is valid, can be proven, but the proof has not yet been found.
 - The statement is valid, but it cannot be proven in the system.
 - The statement is invalid.

Observation

 In the case that no proof has been found, there is no indication of why it is so.

http://rise4fun.com/dafny

Homework

Homework

• Prove correctness of the following program using Dafny

```
 \begin{array}{l} \mbox{method Count(N: nat, M: int, P: int) returns (R: int) } \\ \mbox{var } a := M; \\ \mbox{var } b := P; \\ \mbox{var } i := 1; \\ \mbox{while (} i <= N) \\ \mbox{a } := a + 3; \\ \mbox{b } i :
```

• Read and repeat:

Jaco van de Pol: Automated verification of Nested DFS

http://dx.doi.org/10.1007/978-3-319-19458-5_12